Contract
0xe37d4F73ef1C85dEf2174A394f17Ac65DD3cBB81
7
Contract Overview
Balance:
0 ETH
My Name Tag:
Not Available
Latest 16 internal transactions
[ Download CSV Export ]
Contract Source Code Verified (Exact Match)
Contract Name:
TokenFacet
Compiler Version
v0.8.17+commit.8df45f5f
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Internal function that returns the initialized version. Returns `_initialized` */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Internal function that returns the initialized version. Returns `_initializing` */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20Upgradeable.sol"; import "./extensions/IERC20MetadataUpgradeable.sol"; import "../../utils/ContextUpgradeable.sol"; import "../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing { __ERC20_init_unchained(name_, symbol_); } function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[45] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20Upgradeable { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/extensions/ERC20Burnable.sol) pragma solidity ^0.8.0; import "../ERC20Upgradeable.sol"; import "../../../utils/ContextUpgradeable.sol"; import "../../../proxy/utils/Initializable.sol"; /** * @dev Extension of {ERC20} that allows token holders to destroy both their own * tokens and those that they have an allowance for, in a way that can be * recognized off-chain (via event analysis). */ abstract contract ERC20BurnableUpgradeable is Initializable, ContextUpgradeable, ERC20Upgradeable { function __ERC20Burnable_init() internal onlyInitializing { } function __ERC20Burnable_init_unchained() internal onlyInitializing { } /** * @dev Destroys `amount` tokens from the caller. * * See {ERC20-_burn}. */ function burn(uint256 amount) public virtual { _burn(_msgSender(), amount); } /** * @dev Destroys `amount` tokens from `account`, deducting from the caller's * allowance. * * See {ERC20-_burn} and {ERC20-allowance}. * * Requirements: * * - the caller must have allowance for ``accounts``'s tokens of at least * `amount`. */ function burnFrom(address account, uint256 amount) public virtual { _spendAllowance(account, _msgSender(), amount); _burn(account, amount); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20Upgradeable.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20MetadataUpgradeable is IERC20Upgradeable { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (interfaces/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../token/ERC20/extensions/IERC20Metadata.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Counters.sol) pragma solidity ^0.8.0; /** * @title Counters * @author Matt Condon (@shrugs) * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number * of elements in a mapping, issuing ERC721 ids, or counting request ids. * * Include with `using Counters for Counters.Counter;` */ library Counters { struct Counter { // This variable should never be directly accessed by users of the library: interactions must be restricted to // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add // this feature: see https://github.com/ethereum/solidity/issues/4637 uint256 _value; // default: 0 } function current(Counter storage counter) internal view returns (uint256) { return counter._value; } function increment(Counter storage counter) internal { unchecked { counter._value += 1; } } function decrement(Counter storage counter) internal { uint256 value = counter._value; require(value > 0, "Counter: decrement overflow"); unchecked { counter._value = value - 1; } } function reset(Counter storage counter) internal { counter._value = 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.0; import "./ECDSA.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * _Available since v3.4._ */ abstract contract EIP712 { /* solhint-disable var-name-mixedcase */ // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _CACHED_DOMAIN_SEPARATOR; uint256 private immutable _CACHED_CHAIN_ID; address private immutable _CACHED_THIS; bytes32 private immutable _HASHED_NAME; bytes32 private immutable _HASHED_VERSION; bytes32 private immutable _TYPE_HASH; /* solhint-enable var-name-mixedcase */ /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { bytes32 hashedName = keccak256(bytes(name)); bytes32 hashedVersion = keccak256(bytes(version)); bytes32 typeHash = keccak256( "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)" ); _HASHED_NAME = hashedName; _HASHED_VERSION = hashedVersion; _CACHED_CHAIN_ID = block.chainid; _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion); _CACHED_THIS = address(this); _TYPE_HASH = typeHash; } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID) { return _CACHED_DOMAIN_SEPARATOR; } else { return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION); } } function _buildDomainSeparator( bytes32 typeHash, bytes32 nameHash, bytes32 versionHash ) private view returns (bytes32) { return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import {TransferInfo, AppStorage, Role} from "../libraries/LibConnextStorage.sol"; import {LibDiamond} from "../libraries/LibDiamond.sol"; import {AssetLogic} from "../libraries/AssetLogic.sol"; import {TokenId} from "../libraries/TokenId.sol"; import {Constants} from "../libraries/Constants.sol"; contract BaseConnextFacet { AppStorage internal s; // ========== Custom Errors =========== error BaseConnextFacet__onlyOwner_notOwner(); error BaseConnextFacet__onlyProposed_notProposedOwner(); error BaseConnextFacet__onlyOwnerOrRouter_notOwnerOrRouter(); error BaseConnextFacet__onlyOwnerOrWatcher_notOwnerOrWatcher(); error BaseConnextFacet__onlyOwnerOrAdmin_notOwnerOrAdmin(); error BaseConnextFacet__whenNotPaused_paused(); error BaseConnextFacet__nonReentrant_reentrantCall(); error BaseConnextFacet__nonXCallReentrant_reentrantCall(); error BaseConnextFacet__getAdoptedAsset_assetNotFound(); error BaseConnextFacet__getApprovedCanonicalId_notAllowlisted(); // ============ Modifiers ============ /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true if (s._status == Constants.ENTERED) revert BaseConnextFacet__nonReentrant_reentrantCall(); // Any calls to nonReentrant after this point will fail s._status = Constants.ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) s._status = Constants.NOT_ENTERED; } modifier nonXCallReentrant() { // On the first call to nonReentrant, _notEntered will be true if (s._xcallStatus == Constants.ENTERED) revert BaseConnextFacet__nonXCallReentrant_reentrantCall(); // Any calls to nonReentrant after this point will fail s._xcallStatus = Constants.ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) s._xcallStatus = Constants.NOT_ENTERED; } /** * @notice Throws if called by any account other than the owner. */ modifier onlyOwner() { if (LibDiamond.contractOwner() != msg.sender) revert BaseConnextFacet__onlyOwner_notOwner(); _; } /** * @notice Throws if called by any account other than the proposed owner. */ modifier onlyProposed() { if (s._proposed != msg.sender) revert BaseConnextFacet__onlyProposed_notProposedOwner(); _; } /** * @notice Throws if called by any account other than the owner and router role. */ modifier onlyOwnerOrRouter() { if (LibDiamond.contractOwner() != msg.sender && s.roles[msg.sender] != Role.RouterAdmin) revert BaseConnextFacet__onlyOwnerOrRouter_notOwnerOrRouter(); _; } /** * @notice Throws if called by any account other than the owner and watcher role. */ modifier onlyOwnerOrWatcher() { if (LibDiamond.contractOwner() != msg.sender && s.roles[msg.sender] != Role.Watcher) revert BaseConnextFacet__onlyOwnerOrWatcher_notOwnerOrWatcher(); _; } /** * @notice Throws if called by any account other than the owner and admin role. */ modifier onlyOwnerOrAdmin() { if (LibDiamond.contractOwner() != msg.sender && s.roles[msg.sender] != Role.Admin) revert BaseConnextFacet__onlyOwnerOrAdmin_notOwnerOrAdmin(); _; } /** * @notice Throws if all functionality is paused */ modifier whenNotPaused() { if (s._paused) revert BaseConnextFacet__whenNotPaused_paused(); _; } // ============ Internal functions ============ /** * @notice Indicates if the router allowlist has been removed */ function _isRouterAllowlistRemoved() internal view returns (bool) { return LibDiamond.contractOwner() == address(0) || s._routerAllowlistRemoved; } /** * @notice Returns the adopted assets for given canonical information */ function _getAdoptedAsset(bytes32 _key) internal view returns (address) { address adopted = AssetLogic.getConfig(_key).adopted; if (adopted == address(0)) { revert BaseConnextFacet__getAdoptedAsset_assetNotFound(); } return adopted; } /** * @notice Returns the adopted assets for given canonical information */ function _getRepresentationAsset(bytes32 _key) internal view returns (address) { address representation = AssetLogic.getConfig(_key).representation; // If this is address(0), then there is no mintable token for this asset on this // domain return representation; } /** * @notice Calculates a transferId */ function _calculateTransferId(TransferInfo memory _params) internal pure returns (bytes32) { return keccak256(abi.encode(_params)); } /** * @notice Internal utility function that combines * `_origin` and `_nonce`. * @dev Both origin and nonce should be less than 2^32 - 1 * @param _origin Domain of chain where the transfer originated * @param _nonce The unique identifier for the message from origin to destination * @return Returns (`_origin` << 32) & `_nonce` */ function _originAndNonce(uint32 _origin, uint32 _nonce) internal pure returns (uint64) { return (uint64(_origin) << 32) | _nonce; } function _getLocalAsset( bytes32 _key, bytes32 _id, uint32 _domain ) internal view returns (address) { return AssetLogic.getLocalAsset(_key, _id, _domain, s); } function _getCanonicalTokenId(address _candidate) internal view returns (TokenId memory) { return AssetLogic.getCanonicalTokenId(_candidate, s); } function _getLocalAndAdoptedToken( bytes32 _key, bytes32 _id, uint32 _domain ) internal view returns (address, address) { address _local = AssetLogic.getLocalAsset(_key, _id, _domain, s); address _adopted = _getAdoptedAsset(_key); return (_local, _adopted); } function _isLocalOrigin(address _token) internal view returns (bool) { return AssetLogic.isLocalOrigin(_token, s); } function _getApprovedCanonicalId(address _candidate) internal view returns (TokenId memory, bytes32) { TokenId memory _canonical = _getCanonicalTokenId(_candidate); bytes32 _key = AssetLogic.calculateCanonicalHash(_canonical.id, _canonical.domain); if (!AssetLogic.getConfig(_key).approval) { revert BaseConnextFacet__getApprovedCanonicalId_notAllowlisted(); } return (_canonical, _key); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; import {IERC20Metadata} from "@openzeppelin/contracts/interfaces/IERC20Metadata.sol"; import {TypeCasts} from "../../../shared/libraries/TypeCasts.sol"; import {TokenId} from "../libraries/TokenId.sol"; import {AssetLogic} from "../libraries/AssetLogic.sol"; import {TokenConfig} from "../libraries/LibConnextStorage.sol"; import {IStableSwap} from "../interfaces/IStableSwap.sol"; import {IBridgeToken} from "../interfaces/IBridgeToken.sol"; import {BridgeToken} from "../helpers/BridgeToken.sol"; import {BaseConnextFacet} from "./BaseConnextFacet.sol"; contract TokenFacet is BaseConnextFacet { // ========== Custom Errors =========== error TokenFacet__addAssetId_alreadyAdded(); error TokenFacet__addAssetId_badMint(); error TokenFacet__addAssetId_badBurn(); error TokenFacet__removeAssetId_notAdded(); error TokenFacet__removeAssetId_invalidParams(); error TokenFacet__removeAssetId_remainsCustodied(); error TokenFacet__updateDetails_localNotFound(); error TokenFacet__updateDetails_onlyRemote(); error TokenFacet__updateDetails_notApproved(); error TokenFacet__enrollAdoptedAndLocalAssets_emptyCanonical(); error TokenFacet__setupAsset_representationListed(); error TokenFacet__setupAsset_invalidCanonicalConfiguration(); error TokenFacet__setupAssetWithDeployedRepresentation_invalidRepresentation(); error TokenFacet__setupAssetWithDeployedRepresentation_onCanonicalDomain(); error TokenFacet__setLiquidityCap_notCanonicalDomain(); // ============ Events ============ /** * @notice emitted when a representation token contract is deployed * @param domain the domain of the chain where the canonical asset is deployed * @param id the bytes32 address of the canonical token contract * @param representation the address of the newly locally deployed representation contract */ event TokenDeployed(uint32 indexed domain, bytes32 indexed id, address indexed representation); /** * @notice Emitted when a new stable-swap AMM is added for the local <> adopted token * @param key - The key in the mapping (hash of canonical id and domain) * @param canonicalId - The canonical identifier of the token the local <> adopted AMM is for * @param domain - The domain of the canonical token for the local <> adopted amm * @param swapPool - The address of the AMM * @param caller - The account that called the function */ event StableSwapAdded( bytes32 indexed key, bytes32 indexed canonicalId, uint32 indexed domain, address swapPool, address caller ); /** * @notice Emitted when a liquidity cap is updated * @param key - The key in the mapping (hash of canonical id and domain) * @param canonicalId - The canonical identifier of the token the local <> adopted AMM is for * @param domain - The domain of the canonical token for the local <> adopted amm * @param cap - The newly enforced liquidity cap (if it is 0, no cap is enforced) * @param caller - The account that called the function */ event LiquidityCapUpdated( bytes32 indexed key, bytes32 indexed canonicalId, uint32 indexed domain, uint256 cap, address caller ); /** * @notice Emitted when a new asset is added * @param key - The key in the mapping (hash of canonical id and domain) * @param canonicalId - The canonical identifier of the token the local <> adopted AMM is for * @param domain - The domain of the canonical token for the local <> adopted amm * @param adoptedAsset - The address of the adopted (user-expected) asset * @param localAsset - The address of the local asset * @param caller - The account that called the function */ event AssetAdded( bytes32 indexed key, bytes32 indexed canonicalId, uint32 indexed domain, address adoptedAsset, address localAsset, address caller ); /** * @notice Emitted when an asset is removed from allowlists * @param key - The hash of the canonical identifier and domain of the token removed * @param caller - The account that called the function */ event AssetRemoved(bytes32 indexed key, address caller); // ============ Getters ============ function canonicalToAdopted(bytes32 _key) public view returns (address) { return _getAdoptedAsset(_key); } function canonicalToAdopted(TokenId calldata _canonical) public view returns (address) { return _getAdoptedAsset(AssetLogic.calculateCanonicalHash(_canonical.id, _canonical.domain)); } function adoptedToCanonical(address _adopted) public view returns (TokenId memory) { TokenId memory canonical = TokenId(s.adoptedToCanonical[_adopted].domain, s.adoptedToCanonical[_adopted].id); return canonical; } function canonicalToRepresentation(bytes32 _key) public view returns (address) { return _getRepresentationAsset(_key); } function canonicalToRepresentation(TokenId calldata _canonical) public view returns (address) { return _getRepresentationAsset(AssetLogic.calculateCanonicalHash(_canonical.id, _canonical.domain)); } function representationToCanonical(address _representation) public view returns (TokenId memory) { TokenId memory canonical = TokenId( s.representationToCanonical[_representation].domain, s.representationToCanonical[_representation].id ); return canonical; } function getTokenId(address _candidate) public view returns (TokenId memory) { return _getCanonicalTokenId(_candidate); } function getLocalAndAdoptedToken(bytes32 _id, uint32 _domain) public view returns (address, address) { return _getLocalAndAdoptedToken(AssetLogic.calculateCanonicalHash(_id, _domain), _id, _domain); } function approvedAssets(bytes32 _key) public view returns (bool) { return s.tokenConfigs[_key].approval; } function approvedAssets(TokenId calldata _canonical) public view returns (bool) { return approvedAssets(AssetLogic.calculateCanonicalHash(_canonical.id, _canonical.domain)); } function adoptedToLocalExternalPools(bytes32 _key) public view returns (IStableSwap) { return IStableSwap(s.tokenConfigs[_key].adoptedToLocalExternalPools); } function adoptedToLocalExternalPools(TokenId calldata _canonical) public view returns (IStableSwap) { return adoptedToLocalExternalPools(AssetLogic.calculateCanonicalHash(_canonical.id, _canonical.domain)); } function getCustodiedAmount(bytes32 _key) public view returns (uint256) { return s.tokenConfigs[_key].custodied; } // ============ Admin functions ============ /** * @notice Used to add supported assets. This is an admin only function * * @dev When allowlisting the canonical asset, all representational assets would be * allowlisted as well. In the event you have a different adopted asset (i.e. PoS USDC * on polygon), you should *not* allowlist the adopted asset. The stable swap pool * address used should allow you to swap between the local <> adopted asset. * * If a representation has been deployed at any point, `setupAssetWithDeployedRepresentation` * should be used instead. * * The following can only be added on *REMOTE* domains: * - `_adoptedAssetId` * - `_stableSwapPool` * * Whereas the `_cap` can only be added on the canonical domain * * @param _canonical - The canonical asset to add by id and domain. All representations * will be allowlisted as well * @param _canonicalDecimals - The decimals of the canonical asset (will be used for deployed * representation) * @param _representationName - The name to be used for the deployed asset * @param _representationSymbol - The symbol used for the deployed asset * @param _adoptedAssetId - The used asset id for this domain (e.g. PoS USDC for * polygon) * @param _stableSwapPool - The address of the local stableswap pool, if it exists. */ function setupAsset( TokenId calldata _canonical, uint8 _canonicalDecimals, string memory _representationName, string memory _representationSymbol, address _adoptedAssetId, address _stableSwapPool, uint256 _cap ) external onlyOwnerOrAdmin returns (address _local) { // Calculate the canonical key. bytes32 key = AssetLogic.calculateCanonicalHash(_canonical.id, _canonical.domain); bool onCanonical = _canonical.domain == s.domain; if (onCanonical) { // On the canonical domain, the local is the canonical address. _local = TypeCasts.bytes32ToAddress(_canonical.id); // Sanity check: ensure adopted asset ID == canonical address (or empty). // This could reflect a user error or miscalculation and lead to unexpected behavior. // NOTE: Since we're on canonical domain, there should be no stableswap pool provided. if ((_adoptedAssetId != address(0) && _adoptedAssetId != _local) || _stableSwapPool != address(0)) { revert TokenFacet__setupAsset_invalidCanonicalConfiguration(); } // Enroll the asset. Pass in address(0) for adopted: it should use the local asset (i.e. the // canonical asset in this case) instead for both adopted and local. _enrollAdoptedAndLocalAssets(true, _canonicalDecimals, address(0), _local, address(0), _canonical, _cap, key); } else { // Cannot already have an assigned representation. // NOTE: *If* it does, it can still be replaced with `setupAssetWithDeployedRepresentation` if (s.tokenConfigs[key].representation != address(0) || s.tokenConfigs[key].representationDecimals != 0) { revert TokenFacet__setupAsset_representationListed(); } // On remote, deploy a local representation. _local = _deployRepresentation( _canonical.id, _canonical.domain, _canonicalDecimals, _representationName, _representationSymbol ); // Enroll the asset. _enrollAdoptedAndLocalAssets( false, _canonicalDecimals, _adoptedAssetId, _local, _stableSwapPool, _canonical, 0, key ); } } /** * @notice Used to add supported assets, without deploying a unique representation * asset, and instead using what admins have provided. This is an admin only function * * @dev This function does very minimal checks to ensure the correct `_representation` * token is used. The only enforced checks are: * - Bridge can mint, and balance of bridge will increase * - Bridge can burn, and balance of bridge will decrease * * However, there are many things that must be checked manually to avoid enrolling a bad * representation: * - decimals must always be equal to canonical decimals * - regular `mint`, `burn`, `ERC20` functionality could be implemented improperly * - the required interface functions (see `IBridgeToken`) may not be implemented * - upgradeability could interfere with required functionality * * Using this method allows admins to override existing local tokens, and should be used * carefully. * * @param _canonical - The canonical asset to add by id and domain. All representations * will be whitelisted as well * @param _representation - The address of the representative asset * @param _adoptedAssetId - The used asset id for this domain (e.g. PoS USDC for * polygon) * @param _stableSwapPool - The address of the local stableswap pool, if it exists. */ function setupAssetWithDeployedRepresentation( TokenId calldata _canonical, address _representation, address _adoptedAssetId, address _stableSwapPool ) external onlyOwnerOrAdmin returns (address) { if (_representation == address(0)) { revert TokenFacet__setupAssetWithDeployedRepresentation_invalidRepresentation(); } if (_canonical.domain == s.domain) { revert TokenFacet__setupAssetWithDeployedRepresentation_onCanonicalDomain(); } // Calculate the canonical key. bytes32 key = AssetLogic.calculateCanonicalHash(_canonical.id, _canonical.domain); _enrollAdoptedAndLocalAssets( false, IERC20Metadata(_representation).decimals(), _adoptedAssetId, _representation, _stableSwapPool, _canonical, 0, key ); return _representation; } /** * @notice Adds a stable swap pool for the local <> adopted asset. * @dev Must pass in the _canonical information so it can be emitted in event */ function addStableSwapPool(TokenId calldata _canonical, address _stableSwapPool) external onlyOwnerOrAdmin { bytes32 key = AssetLogic.calculateCanonicalHash(_canonical.id, _canonical.domain); _addStableSwapPool(_canonical, _stableSwapPool, key); } /** * @notice Adds a stable swap pool for the local <> adopted asset. * @dev Must pass in the _canonical information so it can be emitted in event */ function updateLiquidityCap(TokenId calldata _canonical, uint256 _updated) external onlyOwnerOrAdmin { bytes32 key = AssetLogic.calculateCanonicalHash(_canonical.id, _canonical.domain); _setLiquidityCap(_canonical, _updated, key); } /** * @notice Used to remove assets from the allowlist * @param _key - The hash of the canonical id and domain to remove (mapping key) * @param _adoptedAssetId - Corresponding adopted asset to remove * @param _representation - Corresponding representation asset to remove */ function removeAssetId( bytes32 _key, address _adoptedAssetId, address _representation ) external onlyOwnerOrAdmin { TokenId memory canonical = s.adoptedToCanonical[_adoptedAssetId]; _removeAssetId(_key, _adoptedAssetId, _representation, canonical); } /** * @notice Used to remove assets from the allowlist * @param _canonical - The canonical id and domain to remove * @param _adoptedAssetId - Corresponding adopted asset to remove * @param _representation - Corresponding representation asset to remove */ function removeAssetId( TokenId calldata _canonical, address _adoptedAssetId, address _representation ) external onlyOwnerOrAdmin { bytes32 key = AssetLogic.calculateCanonicalHash(_canonical.id, _canonical.domain); _removeAssetId(key, _adoptedAssetId, _representation, _canonical); } /** * @notice Used to update the name and symbol of a local token * @param _canonical - The canonical id and domain to remove * @param _name - The new name * @param _symbol - The new symbol */ function updateDetails( TokenId calldata _canonical, string memory _name, string memory _symbol ) external onlyOwnerOrAdmin { bytes32 key = AssetLogic.calculateCanonicalHash(_canonical.id, _canonical.domain); address local = AssetLogic.getConfig(key).representation; if (local == address(0)) { revert TokenFacet__updateDetails_localNotFound(); } // Can only happen on remote domains if (s.domain == _canonical.domain) { revert TokenFacet__updateDetails_onlyRemote(); } // ensure asset is currently approved because `s.canonicalToRepresentation` does // not get cleared when asset is removed from allowlist if (!s.tokenConfigs[key].approval) { revert TokenFacet__updateDetails_notApproved(); } // make sure the asset is still active IBridgeToken(local).setDetails(_name, _symbol); } // ============ Private Functions ============ function _enrollAdoptedAndLocalAssets( bool _onCanonical, uint8 _localDecimals, address _adopted, address _local, address _stableSwapPool, TokenId calldata _canonical, uint256 _cap, bytes32 _key ) internal { // Sanity check: canonical ID and domain are not 0. if (_canonical.domain == 0 || _canonical.id == bytes32("")) { revert TokenFacet__enrollAdoptedAndLocalAssets_emptyCanonical(); } // Get true adopted bool adoptedIsLocal = _adopted == address(0); address adopted = adoptedIsLocal ? _local : _adopted; // Get whether you are on canonical bool onCanonical = s.domain == _canonical.domain; // Sanity check: needs approval if (s.tokenConfigs[_key].approval) revert TokenFacet__addAssetId_alreadyAdded(); // Sanity check: bridge can mint / burn on remote if (!onCanonical) { IBridgeToken candidate = IBridgeToken(_local); uint256 starting = candidate.balanceOf(address(this)); candidate.mint(address(this), 1); if (candidate.balanceOf(address(this)) != starting + 1) { revert TokenFacet__addAssetId_badMint(); } candidate.burn(address(this), 1); if (candidate.balanceOf(address(this)) != starting) { revert TokenFacet__addAssetId_badBurn(); } } // Generate Config // NOTE: Using address(0) for stable swap, then using `_addStableSwap`. Slightly less // efficient, but preserves events. Same case for cap / custodied. // NOTE: IFF on canonical domain, `representation` must *always* be address(0)! s.tokenConfigs[_key] = TokenConfig( _onCanonical ? address(0) : _local, // representation _localDecimals, // representationDecimals adopted, // adopted adoptedIsLocal ? _localDecimals : IERC20Metadata(adopted).decimals(), // adoptedDecimals address(0), // adoptedToLocalExternalPools, see note true, // approval 0, // cap, see note 0 // custodied, see note ); // Update reverse lookups // Update the adopted mapping using convention of local == adopted iff (_adopted == address(0)) s.adoptedToCanonical[adopted].domain = _canonical.domain; s.adoptedToCanonical[adopted].id = _canonical.id; if (!_onCanonical) { // Update the local <> canonical. Representations only exist on non-canonical domains. s.representationToCanonical[_local].domain = _canonical.domain; s.representationToCanonical[_local].id = _canonical.id; // Update swap (on the canonical domain, there is no representation / pool). _addStableSwapPool(_canonical, _stableSwapPool, _key); } else if (_cap > 0) { // Update cap (only on canonical domain). _setLiquidityCap(_canonical, _cap, _key); } // Emit event emit AssetAdded(_key, _canonical.id, _canonical.domain, adopted, _local, msg.sender); } /** * @notice Used to add an AMM for adopted <> local assets * @param _canonical - The canonical TokenId to add (domain and id) * @param _stableSwap - The address of the amm to add * @param _key - The hash of the canonical id and domain */ function _addStableSwapPool( TokenId calldata _canonical, address _stableSwap, bytes32 _key ) internal { // Update the pool mapping s.tokenConfigs[_key].adoptedToLocalExternalPools = _stableSwap; // Emit event emit StableSwapAdded(_key, _canonical.id, _canonical.domain, _stableSwap, msg.sender); } /** * @notice Used to add a cap on amount of custodied canonical asset * @dev The `custodied` amount will only increase in real time as router liquidity * and xcall are used and the cap is set (i.e. if cap is removed, `custodied` values are * no longer updated or enforced). * * When the `cap` is updated, the `custodied` value is set to the balance of the contract, * which is distinct from *retrievable* funds from the contracts (i.e. could include the * value someone just sent directly to the contract). Whenever you are updating the cap, you * should set the value with this in mind. * * @param _canonical - The canonical TokenId to add (domain and id) * @param _updated - The updated liquidity cap value * @param _key - The hash of the canonical id and domain */ function _setLiquidityCap( TokenId calldata _canonical, uint256 _updated, bytes32 _key ) internal { if (s.domain != _canonical.domain) { revert TokenFacet__setLiquidityCap_notCanonicalDomain(); } // Update the stored cap s.tokenConfigs[_key].cap = _updated; if (_updated > 0) { // Update the custodied value to be the balance of this contract address canonical = TypeCasts.bytes32ToAddress(_canonical.id); s.tokenConfigs[_key].custodied = IERC20Metadata(canonical).balanceOf(address(this)); } emit LiquidityCapUpdated(_key, _canonical.id, _canonical.domain, _updated, msg.sender); } /** * @notice Used to remove assets from the allowlist * * @dev When you are removing an asset, `xcall` will fail but `handle` and `execute` will not to * allow for inflight transfers to be addressed. Similarly, the `repayAavePortal` function will * work. * * @param _key - The hash of the canonical id and domain to remove (mapping key) * @param _adoptedAssetId - Corresponding adopted asset to remove * @param _representation - Corresponding representation asset (i.e. bridged asset) to remove. * @param _canonical - The TokenId (canonical ID and domain) of the asset. */ function _removeAssetId( bytes32 _key, address _adoptedAssetId, address _representation, TokenId memory _canonical ) internal { TokenConfig storage config = s.tokenConfigs[_key]; // Sanity check: already approval if (!config.approval) revert TokenFacet__removeAssetId_notAdded(); // Sanity check: consistent set of params if (config.adopted != _adoptedAssetId || config.representation != _representation) revert TokenFacet__removeAssetId_invalidParams(); bool onCanonical = s.domain == _canonical.domain; if (onCanonical) { // Sanity check: no value custodied if on canonical domain address canonicalAsset = TypeCasts.bytes32ToAddress(_canonical.id); // Check custodied amount for the given canonical asset address. // NOTE: if the `cap` is not set, the `custodied` value will not continue to be updated, // so you must use the `balanceOf` for accurate accounting. If there are funds held // on these contracts, then when you remove the asset id, the assets cannot be bridged back and // become worthless. This means the bridged assets would become worthless. // An attacker could prevent admins from removing an asset by sending funds to this contract, // but all of the liquidity should already be removed before this function is called. if (IERC20Metadata(canonicalAsset).balanceOf(address(this)) > 0) { revert TokenFacet__removeAssetId_remainsCustodied(); } } else { // Sanity check: supply is 0 if on remote domain. if (IBridgeToken(_representation).totalSupply() > 0) { revert TokenFacet__removeAssetId_remainsCustodied(); } } // Delete token config from configs mapping. // NOTE: we do NOT delete the representation entries from the config. This is // done to prevent multiple representations being deployed in `setupAsset` delete s.tokenConfigs[_key].adopted; delete s.tokenConfigs[_key].adoptedDecimals; delete s.tokenConfigs[_key].adoptedToLocalExternalPools; delete s.tokenConfigs[_key].approval; delete s.tokenConfigs[_key].cap; // NOTE: custodied will always be 0 at this point // Delete from reverse lookups delete s.representationToCanonical[_representation]; delete s.adoptedToCanonical[_adoptedAssetId]; // Emit event emit AssetRemoved(_key, msg.sender); } /** * @notice Deploy and initialize a new token contract * @dev Each token contract is a proxy which * points to the token upgrade beacon * @return _token the address of the token contract */ function _deployRepresentation( bytes32 _id, uint32 _domain, uint8 _decimals, string memory _name, string memory _symbol ) internal returns (address _token) { // deploy the token contract _token = address(new BridgeToken(_decimals, _name, _symbol)); // emit event upon deploying new token emit TokenDeployed(_domain, _id, _token); } }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol"; import {IBridgeToken} from "../interfaces/IBridgeToken.sol"; import {ERC20} from "./OZERC20.sol"; contract BridgeToken is IBridgeToken, Ownable, ERC20 { // ============ Constructor ============ constructor( uint8 decimals_, string memory name_, string memory symbol_ ) Ownable() ERC20(decimals_, name_, symbol_, "1") {} // ============ Events ============ event UpdateDetails(string indexed name, string indexed symbol); // ============ Admin Functions ============ /** * @notice Destroys `_amnt` tokens from `_from`, reducing the * total supply. * @dev Emits a {Transfer} event with `to` set to the zero address. * Requirements: * - `_from` cannot be the zero address. * - `_from` must have at least `_amnt` tokens. * @param _from The address from which to destroy the tokens * @param _amnt The amount of tokens to be destroyed */ function burn(address _from, uint256 _amnt) external override onlyOwner { _burn(_from, _amnt); } /** @notice Creates `_amnt` tokens and assigns them to `_to`, increasing * the total supply. * @dev Emits a {Transfer} event with `from` set to the zero address. * Requirements: * - `to` cannot be the zero address. * @param _to The destination address * @param _amnt The amount of tokens to be minted */ function mint(address _to, uint256 _amnt) external override onlyOwner { _mint(_to, _amnt); } /** * @notice Set the details of a token * @param _newName The new name * @param _newSymbol The new symbol */ function setDetails(string calldata _newName, string calldata _newSymbol) external override onlyOwner { // careful with naming convention change here _name = _newName; _symbol = _newSymbol; bytes32 hashedName = keccak256(bytes(_newName)); _HASHED_NAME = hashedName; _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(_TYPE_HASH, hashedName, _HASHED_VERSION); emit UpdateDetails(_newName, _newSymbol); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import {ERC20Upgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20BurnableUpgradeable.sol"; import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; /** * @title Liquidity Provider Token * @notice This token is an ERC20 detailed token with added capability to be minted by the owner. * It is used to represent user's shares when providing liquidity to swap contracts. * @dev Only Swap contracts should initialize and own LPToken contracts. */ contract LPToken is ERC20Upgradeable, OwnableUpgradeable { // ============ Storage ============ // ============ Initializer ============ /** * @notice Initializes this LPToken contract with the given name and symbol * @dev The caller of this function will become the owner. A Swap contract should call this * in its initializer function. * @param name name of this token * @param symbol symbol of this token */ function initialize(string memory name, string memory symbol) external initializer returns (bool) { __Context_init_unchained(); __ERC20_init_unchained(name, symbol); __Ownable_init_unchained(); return true; } // ============ External functions ============ /** * @notice Mints the given amount of LPToken to the recipient. * @dev only owner can call this mint function * @param recipient address of account to receive the tokens * @param amount amount of tokens to mint */ function mint(address recipient, uint256 amount) external onlyOwner { require(amount != 0, "LPToken: cannot mint 0"); _mint(recipient, amount); } /** * @notice Burns the given amount of LPToken from provided account * @dev only owner can call this burn function * @param account address of account from which to burn token * @param amount amount of tokens to mint */ function burnFrom(address account, uint256 amount) external onlyOwner { require(amount != 0, "LPToken: cannot burn 0"); _burn(account, amount); } // ============ Internal functions ============ /** * @dev Overrides ERC20._beforeTokenTransfer() which get called on every transfers including * minting and burning. This ensures that Swap.updateUserWithdrawFees are called everytime. * This assumes the owner is set to a Swap contract's address. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual override(ERC20Upgradeable) { super._beforeTokenTransfer(from, to, amount); require(to != address(this), "LPToken: cannot send to itself"); } // ============ Upgrade Gap ============ uint256[50] private __GAP; // gap for upgrade safety }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; // This is modified from "@openzeppelin/contracts/token/ERC20/IERC20.sol" // Modifications were made to allow the name, hashed name, and cached // domain separator to be internal import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol"; import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol"; import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "@openzeppelin/contracts/utils/Counters.sol"; /** * @dev Implementation of the {IERC20} interface. * * Implements ERC20 Permit extension allowing approvals to be made via * signatures, as defined in https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 * allowance (see {IERC20-allowance}) by presenting a message signed by the * account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. * * @dev Cannot use default ERC20/ERC20Permit implementation as there is no way to update * the name (set to private). * * Cannot use default EIP712 implementation as the _HASHED_NAME may change. * These functions use the same implementation, with easier storage access. */ contract ERC20 is IERC20Metadata, IERC20Permit { // See ERC20 mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string internal _name; // made internal, need access string internal _symbol; // made internal, need access uint8 internal _decimals; // made internal, need access // See ERC20Permit using Counters for Counters.Counter; mapping(address => Counters.Counter) private _nonces; // See EIP712 // Immutables used in EIP 712 structured data hashing & signing // https://eips.ethereum.org/EIPS/eip-712 bytes32 private constant _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 internal constant _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // made internal, need access // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 internal _CACHED_DOMAIN_SEPARATOR; // made internal, may change uint256 private immutable _CACHED_CHAIN_ID; address private immutable _CACHED_THIS; bytes32 internal _HASHED_NAME; // made internal, may change bytes32 internal immutable _HASHED_VERSION; // made internal, need access /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, * and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ constructor( uint8 decimals_, string memory name_, string memory symbol_, string memory version_ ) { // ERC20 _name = name_; _symbol = symbol_; _decimals = decimals_; // EIP712 bytes32 hashedName = keccak256(bytes(name_)); bytes32 hashedVersion = keccak256(bytes(version_)); _HASHED_NAME = hashedName; _HASHED_VERSION = hashedVersion; _CACHED_CHAIN_ID = block.chainid; _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(_TYPE_HASH, hashedName, hashedVersion); _CACHED_THIS = address(this); } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { _transfer(msg.sender, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address _owner, address _spender) public view virtual override returns (uint256) { return _allowances[_owner][_spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(msg.sender, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `_sender` and `recipient` cannot be the zero address. * - `_sender` must have a balance of at least `amount`. * - the caller must have allowance for ``_sender``'s tokens of at least * `amount`. */ function transferFrom( address _sender, address _recipient, uint256 _amount ) public virtual override returns (bool) { _spendAllowance(_sender, msg.sender, _amount); _transfer(_sender, _recipient, _amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `_spender` cannot be the zero address. */ function increaseAllowance(address _spender, uint256 _addedValue) public virtual returns (bool) { _approve(msg.sender, _spender, _allowances[msg.sender][_spender] + _addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `_spender` cannot be the zero address. * - `_spender` must have allowance for the caller of at least * `_subtractedValue`. */ function decreaseAllowance(address _spender, uint256 _subtractedValue) public virtual returns (bool) { uint256 currentAllowance = allowance(msg.sender, _spender); require(currentAllowance >= _subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(msg.sender, _spender, currentAllowance - _subtractedValue); } return true; } /** * @dev Moves tokens `amount` from `_sender` to `_recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `_sender` cannot be the zero address. * - `_recipient` cannot be the zero address. * - `_sender` must have a balance of at least `amount`. */ function _transfer( address _sender, address _recipient, uint256 _amount ) internal virtual { require(_sender != address(0), "ERC20: transfer from the zero address"); require(_recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(_sender, _recipient, _amount); uint256 fromBalance = _balances[_sender]; require(fromBalance >= _amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[_sender] = fromBalance - _amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[_recipient] += _amount; } emit Transfer(_sender, _recipient, _amount); _afterTokenTransfer(_sender, _recipient, _amount); } /** @dev Creates `_amount` tokens and assigns them to `_account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address _account, uint256 _amount) internal virtual { require(_account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), _account, _amount); _totalSupply += _amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[_account] += _amount; } emit Transfer(address(0), _account, _amount); _afterTokenTransfer(address(0), _account, _amount); } /** * @dev Destroys `_amount` tokens from `_account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `_account` cannot be the zero address. * - `_account` must have at least `_amount` tokens. */ function _burn(address _account, uint256 _amount) internal virtual { require(_account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(_account, address(0), _amount); uint256 accountBalance = _balances[_account]; require(accountBalance >= _amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[_account] = accountBalance - _amount; // Overflow not possible: amount <= accountBalance <= totalSupply _totalSupply -= _amount; } emit Transfer(_account, address(0), _amount); _afterTokenTransfer(_account, address(0), _amount); } /** * @dev Sets `_amount` as the allowance of `_spender` over the `_owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `_owner` cannot be the zero address. * - `_spender` cannot be the zero address. */ function _approve( address _owner, address _spender, uint256 _amount ) internal virtual { require(_owner != address(0), "ERC20: approve from the zero address"); require(_spender != address(0), "ERC20: approve to the zero address"); _allowances[_owner][_spender] = _amount; emit Approval(_owner, _spender, _amount); } /** * @dev Updates `_owner` s allowance for `_spender` based on spent `_amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address _owner, address _spender, uint256 _amount ) internal virtual { uint256 currentAllowance = allowance(_owner, _spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= _amount, "ERC20: insufficient allowance"); unchecked { _approve(_owner, _spender, currentAllowance - _amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `_from` and `_to` are both non-zero, `_amount` of ``_from``'s tokens * will be to transferred to `_to`. * - when `_from` is zero, `_amount` tokens will be minted for `_to`. * - when `_to` is zero, `_amount` of ``_from``'s tokens will be burned. * - `_from` and `_to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address _from, address _to, uint256 _amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address _from, address _to, uint256 _amount ) internal virtual {} /** * @dev See {IERC20Permit-permit}. * @notice Sets approval from owner to spender to value * as long as deadline has not passed * by submitting a valid signature from owner * Uses EIP 712 structured data hashing & signing * https://eips.ethereum.org/EIPS/eip-712 * @param _owner The account setting approval & signing the message * @param _spender The account receiving approval to spend owner's tokens * @param _value The amount to set approval for * @param _deadline The timestamp before which the signature must be submitted * @param _v ECDSA signature v * @param _r ECDSA signature r * @param _s ECDSA signature s */ function permit( address _owner, address _spender, uint256 _value, uint256 _deadline, uint8 _v, bytes32 _r, bytes32 _s ) public virtual override { require(block.timestamp <= _deadline, "ERC20Permit: expired deadline"); bytes32 _structHash = keccak256( abi.encode(_PERMIT_TYPEHASH, _owner, _spender, _value, _useNonce(_owner), _deadline) ); bytes32 _hash = _hashTypedDataV4(_structHash); address _signer = ECDSA.recover(_hash, _v, _r, _s); require(_signer == _owner, "ERC20Permit: invalid signature"); _approve(_owner, _spender, _value); } /** * @dev See {IERC20Permit-nonces}. */ function nonces(address _owner) public view virtual override returns (uint256) { return _nonces[_owner].current(); } /** * @dev See {IERC20Permit-DOMAIN_SEPARATOR}. * This is ALWAYS calculated at runtime because the token name is mutable, not constant. */ function DOMAIN_SEPARATOR() external view override returns (bytes32) { return _domainSeparatorV4(); } /** * @dev "Consume a nonce": return the current value and increment. * @dev See {EIP712._buildDomainSeparator} */ function _useNonce(address _owner) internal virtual returns (uint256 current) { Counters.Counter storage nonce = _nonces[_owner]; current = nonce.current(); nonce.increment(); } /** * @dev Returns the domain separator for the current chain. * @dev See {EIP712._buildDomainSeparator} */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID) { return _CACHED_DOMAIN_SEPARATOR; } else { return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION); } } /** * @dev See {EIP712._buildDomainSeparator}. Made internal to allow usage in parent class. */ function _buildDomainSeparator( bytes32 typeHash, bytes32 nameHash, bytes32 versionHash ) internal view returns (bytes32) { return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash); } }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; interface IBridgeToken is IERC20Metadata { function burn(address _from, uint256 _amnt) external; function mint(address _to, uint256 _amnt) external; function setDetails(string calldata _name, string calldata _symbol) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; /******************************************************************************\ * Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) * EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 /******************************************************************************/ interface IDiamondCut { enum FacetCutAction { Add, Replace, Remove } // Add=0, Replace=1, Remove=2 struct FacetCut { address facetAddress; FacetCutAction action; bytes4[] functionSelectors; } /// @notice Propose to add/replace/remove any number of functions and optionally execute /// a function with delegatecall /// @param _diamondCut Contains the facet addresses and function selectors /// @param _init The address of the contract or facet to execute _calldata /// @param _calldata A function call, including function selector and arguments /// _calldata is executed with delegatecall on _init function proposeDiamondCut( FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata ) external; event DiamondCutProposed(FacetCut[] _diamondCut, address _init, bytes _calldata, uint256 deadline); /// @notice Add/replace/remove any number of functions and optionally execute /// a function with delegatecall /// @param _diamondCut Contains the facet addresses and function selectors /// @param _init The address of the contract or facet to execute _calldata /// @param _calldata A function call, including function selector and arguments /// _calldata is executed with delegatecall on _init function diamondCut( FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata ) external; event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata); /// @notice Propose to add/replace/remove any number of functions and optionally execute /// a function with delegatecall /// @param _diamondCut Contains the facet addresses and function selectors /// @param _init The address of the contract or facet to execute _calldata /// @param _calldata A function call, including function selector and arguments /// _calldata is executed with delegatecall on _init function rescindDiamondCut( FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata ) external; /** * @notice Returns the acceptance time for a given proposal * @param _diamondCut Contains the facet addresses and function selectors * @param _init The address of the contract or facet to execute _calldata * @param _calldata A function call, including function selector and arguments _calldata is * executed with delegatecall on _init */ function getAcceptanceTime( FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata ) external returns (uint256); event DiamondCutRescinded(FacetCut[] _diamondCut, address _init, bytes _calldata); }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface IStableSwap { /*** EVENTS ***/ // events replicated from SwapUtils to make the ABI easier for dumb // clients event TokenSwap(address indexed buyer, uint256 tokensSold, uint256 tokensBought, uint128 soldId, uint128 boughtId); event AddLiquidity( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event RemoveLiquidity(address indexed provider, uint256[] tokenAmounts, uint256 lpTokenSupply); event RemoveLiquidityOne( address indexed provider, uint256 lpTokenAmount, uint256 lpTokenSupply, uint256 boughtId, uint256 tokensBought ); event RemoveLiquidityImbalance( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event NewAdminFee(uint256 newAdminFee); event NewSwapFee(uint256 newSwapFee); event NewWithdrawFee(uint256 newWithdrawFee); event RampA(uint256 oldA, uint256 newA, uint256 initialTime, uint256 futureTime); event StopRampA(uint256 currentA, uint256 time); function swap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy, uint256 deadline ) external returns (uint256); function swapExact( uint256 amountIn, address assetIn, address assetOut, uint256 minAmountOut, uint256 deadline ) external payable returns (uint256); function swapExactOut( uint256 amountOut, address assetIn, address assetOut, uint256 maxAmountIn, uint256 deadline ) external payable returns (uint256); function getA() external view returns (uint256); function getToken(uint8 index) external view returns (IERC20); function getTokenIndex(address tokenAddress) external view returns (uint8); function getTokenBalance(uint8 index) external view returns (uint256); function getVirtualPrice() external view returns (uint256); // min return calculation functions function calculateSwap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256); function calculateSwapOut( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dy ) external view returns (uint256); function calculateSwapFromAddress( address assetIn, address assetOut, uint256 amountIn ) external view returns (uint256); function calculateSwapOutFromAddress( address assetIn, address assetOut, uint256 amountOut ) external view returns (uint256); function calculateTokenAmount(uint256[] calldata amounts, bool deposit) external view returns (uint256); function calculateRemoveLiquidity(uint256 amount) external view returns (uint256[] memory); function calculateRemoveLiquidityOneToken(uint256 tokenAmount, uint8 tokenIndex) external view returns (uint256 availableTokenAmount); // state modifying functions function initialize( IERC20[] memory pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 a, uint256 fee, uint256 adminFee, address lpTokenTargetAddress ) external; function addLiquidity( uint256[] calldata amounts, uint256 minToMint, uint256 deadline ) external returns (uint256); function removeLiquidity( uint256 amount, uint256[] calldata minAmounts, uint256 deadline ) external returns (uint256[] memory); function removeLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount, uint256 deadline ) external returns (uint256); function removeLiquidityImbalance( uint256[] calldata amounts, uint256 maxBurnAmount, uint256 deadline ) external returns (uint256); }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import {SwapUtils} from "./SwapUtils.sol"; import {Constants} from "./Constants.sol"; /** * @title AmplificationUtils library * @notice A library to calculate and ramp the A parameter of a given `SwapUtils.Swap` struct. * This library assumes the struct is fully validated. */ library AmplificationUtils { event RampA(uint256 oldA, uint256 newA, uint256 initialTime, uint256 futureTime); event StopRampA(uint256 currentA, uint256 time); /** * @notice Return A, the amplification coefficient * n ** (n - 1) * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return A parameter */ function getA(SwapUtils.Swap storage self) internal view returns (uint256) { return _getAPrecise(self) / Constants.A_PRECISION; } /** * @notice Return A in its raw precision * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return A parameter in its raw precision form */ function getAPrecise(SwapUtils.Swap storage self) internal view returns (uint256) { return _getAPrecise(self); } /** * @notice Return A in its raw precision * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return currentA A parameter in its raw precision form */ function _getAPrecise(SwapUtils.Swap storage self) internal view returns (uint256 currentA) { uint256 t1 = self.futureATime; // time when ramp is finished currentA = self.futureA; // final A value when ramp is finished uint256 a0 = self.initialA; // initial A value when ramp is started if (a0 != currentA && block.timestamp < t1) { uint256 t0 = self.initialATime; // time when ramp is started assembly { currentA := div(add(mul(a0, sub(t1, timestamp())), mul(currentA, sub(timestamp(), t0))), sub(t1, t0)) } } } /** * @notice Start ramping up or down A parameter towards given futureA_ and futureTime_ * Checks if the change is too rapid, and commits the new A value only when it falls under * the limit range. * @param self Swap struct to update * @param futureA_ the new A to ramp towards * @param futureTime_ timestamp when the new A should be reached */ function rampA( SwapUtils.Swap storage self, uint256 futureA_, uint256 futureTime_ ) internal { require(block.timestamp >= self.initialATime + Constants.MIN_RAMP_DELAY, "Wait 1 day before starting ramp"); require(futureTime_ >= block.timestamp + Constants.MIN_RAMP_TIME, "Insufficient ramp time"); require(futureA_ != 0 && futureA_ < Constants.MAX_A, "futureA_ must be > 0 and < MAX_A"); uint256 initialAPrecise = _getAPrecise(self); uint256 futureAPrecise = futureA_ * Constants.A_PRECISION; require(initialAPrecise != futureAPrecise, "!valid ramp"); if (futureAPrecise < initialAPrecise) { require(futureAPrecise * Constants.MAX_A_CHANGE >= initialAPrecise, "futureA_ is too small"); } else { require(futureAPrecise <= initialAPrecise * Constants.MAX_A_CHANGE, "futureA_ is too large"); } self.initialA = initialAPrecise; self.futureA = futureAPrecise; self.initialATime = block.timestamp; self.futureATime = futureTime_; emit RampA(initialAPrecise, futureAPrecise, block.timestamp, futureTime_); } /** * @notice Stops ramping A immediately. Once this function is called, rampA() * cannot be called for another 24 hours * @param self Swap struct to update */ function stopRampA(SwapUtils.Swap storage self) internal { require(self.futureATime > block.timestamp, "Ramp is already stopped"); uint256 currentA = _getAPrecise(self); self.initialA = currentA; self.futureA = currentA; self.initialATime = block.timestamp; self.futureATime = block.timestamp; emit StopRampA(currentA, block.timestamp); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {TypeCasts} from "../../../shared/libraries/TypeCasts.sol"; import {IStableSwap} from "../interfaces/IStableSwap.sol"; import {LibConnextStorage, AppStorage, TokenConfig} from "./LibConnextStorage.sol"; import {SwapUtils} from "./SwapUtils.sol"; import {Constants} from "./Constants.sol"; import {TokenId} from "./TokenId.sol"; library AssetLogic { // ============ Libraries ============ using SwapUtils for SwapUtils.Swap; using SafeERC20 for IERC20Metadata; // ============ Errors ============ error AssetLogic__handleIncomingAsset_nativeAssetNotSupported(); error AssetLogic__handleIncomingAsset_feeOnTransferNotSupported(); error AssetLogic__handleOutgoingAsset_notNative(); error AssetLogic__getTokenIndexFromStableSwapPool_notExist(); error AssetLogic__getConfig_notRegistered(); error AssetLogic__swapAsset_externalStableSwapPoolDoesNotExist(); // ============ Internal: Handle Transfer ============ function getConfig(bytes32 _key) internal view returns (TokenConfig storage) { AppStorage storage s = LibConnextStorage.connextStorage(); TokenConfig storage config = s.tokenConfigs[_key]; // Sanity check: not empty // NOTE: adopted decimals will *always* be nonzero (or reflect what is onchain // for the asset). The same is not true for the representation assets, which // will always have 0 decimals on the canonical domain if (config.adoptedDecimals < 1) { revert AssetLogic__getConfig_notRegistered(); } return config; } /** * @notice Handles transferring funds from msg.sender to the Connext contract. * @dev Does NOT work with fee-on-transfer tokens: will revert. * * @param _asset - The address of the ERC20 token to transfer. * @param _amount - The specified amount to transfer. */ function handleIncomingAsset(address _asset, uint256 _amount) internal { // Sanity check: if amount is 0, do nothing. if (_amount == 0) { return; } // Sanity check: asset address is not zero. if (_asset == address(0)) { revert AssetLogic__handleIncomingAsset_nativeAssetNotSupported(); } IERC20Metadata asset = IERC20Metadata(_asset); // Record starting amount to validate correct amount is transferred. uint256 starting = asset.balanceOf(address(this)); // Transfer asset to contract. asset.safeTransferFrom(msg.sender, address(this), _amount); // Ensure correct amount was transferred (i.e. this was not a fee-on-transfer token). if (asset.balanceOf(address(this)) - starting != _amount) { revert AssetLogic__handleIncomingAsset_feeOnTransferNotSupported(); } } /** * @notice Handles transferring funds from the Connext contract to a specified address * @param _asset - The address of the ERC20 token to transfer. * @param _to - The recipient address that will receive the funds. * @param _amount - The amount to withdraw from contract. */ function handleOutgoingAsset( address _asset, address _to, uint256 _amount ) internal { // Sanity check: if amount is 0, do nothing. if (_amount == 0) { return; } // Sanity check: asset address is not zero. if (_asset == address(0)) revert AssetLogic__handleOutgoingAsset_notNative(); // Transfer ERC20 asset to target recipient. SafeERC20.safeTransfer(IERC20Metadata(_asset), _to, _amount); } // ============ Internal: StableSwap Pools ============ /** * @notice Return the index of the given token address. Reverts if no matching * token is found. * @param key the hash of the canonical id and domain * @param tokenAddress address of the token * @return the index of the given token address */ function getTokenIndexFromStableSwapPool(bytes32 key, address tokenAddress) internal view returns (uint8) { AppStorage storage s = LibConnextStorage.connextStorage(); uint8 index = s.tokenIndexes[key][tokenAddress]; if (address(s.swapStorages[key].pooledTokens[index]) != tokenAddress) revert AssetLogic__getTokenIndexFromStableSwapPool_notExist(); return index; } // ============ Internal: Handle Swap ============ /** * @notice Swaps an adopted asset to the local (representation or canonical) asset. * @dev Will not swap if the asset passed in is the local asset. * @param _key - The hash of canonical id and domain. * @param _asset - The address of the adopted asset to swap into the local asset. * @param _amount - The amount of the adopted asset to swap. * @param _slippage - The maximum amount of slippage user will take on from _amount in BPS. * @return uint256 The amount of local asset received from swap. */ function swapToLocalAssetIfNeeded( bytes32 _key, address _asset, address _local, uint256 _amount, uint256 _slippage ) internal returns (uint256) { // If there's no amount, no need to swap. if (_amount == 0) { return 0; } // Check the case where the adopted asset *is* the local asset. If so, no need to swap. if (_local == _asset) { return _amount; } // Get the configs. TokenConfig storage config = getConfig(_key); // Swap the asset to the proper local asset. (uint256 out, ) = _swapAsset( _key, _asset, _local, _amount, calculateSlippageBoundary(config.adoptedDecimals, config.representationDecimals, _amount, _slippage) ); return out; } /** * @notice Swaps a local bridge asset for the adopted asset using the stored stable swap * @dev Will not swap if the asset passed in is the adopted asset * @param _key the hash of the canonical id and domain * @param _asset - The address of the local asset to swap into the adopted asset * @param _amount - The amount of the local asset to swap * @param _slippage - The minimum amount of slippage user will take on from _amount in BPS * @param _normalizedIn - The amount sent in on xcall to take the slippage from, in 18 decimals * by convention * @return The amount of adopted asset received from swap * @return The address of asset received post-swap */ function swapFromLocalAssetIfNeeded( bytes32 _key, address _asset, uint256 _amount, uint256 _slippage, uint256 _normalizedIn ) internal returns (uint256, address) { // Get the token config. TokenConfig storage config = getConfig(_key); address adopted = config.adopted; // If the adopted asset is the local asset, no need to swap. if (adopted == _asset) { return (_amount, adopted); } // If there's no amount, no need to swap. if (_amount == 0) { return (_amount, adopted); } // Swap the asset to the proper local asset return _swapAsset( _key, _asset, adopted, _amount, // NOTE: To get the slippage boundary here, you must take the slippage % off of the // normalized amount in (at 18 decimals by convention), then convert that amount // to the proper decimals of adopted. calculateSlippageBoundary( Constants.DEFAULT_NORMALIZED_DECIMALS, config.adoptedDecimals, _normalizedIn, _slippage ) ); } /** * @notice Swaps a local bridge asset for the adopted asset using the stored stable swap * @dev Will not swap if the asset passed in is the adopted asset * @param _key the hash of the canonical id and domain * @param _asset - The address of the local asset to swap into the adopted asset * @param _amount - The exact amount to receive out of the swap * @param _maxIn - The most you will supply to the swap * @return The amount of local asset put into swap * @return The address of asset received post-swap */ function swapFromLocalAssetIfNeededForExactOut( bytes32 _key, address _asset, uint256 _amount, uint256 _maxIn ) internal returns (uint256, address) { TokenConfig storage config = getConfig(_key); // If the adopted asset is the local asset, no need to swap. address adopted = config.adopted; if (adopted == _asset) { return (_amount, adopted); } return _swapAssetOut(_key, _asset, adopted, _amount, _maxIn); } /** * @notice Swaps assetIn to assetOut using the stored stable swap or internal swap pool. * @dev Will not swap if the asset passed in is the adopted asset * @param _key - The hash of canonical id and domain. * @param _assetIn - The address of the from asset * @param _assetOut - The address of the to asset * @param _amount - The amount of the local asset to swap * @param _minOut - The minimum amount of `_assetOut` the user will accept * @return The amount of asset received * @return The address of asset received */ function _swapAsset( bytes32 _key, address _assetIn, address _assetOut, uint256 _amount, uint256 _minOut ) internal returns (uint256, address) { AppStorage storage s = LibConnextStorage.connextStorage(); // Retrieve internal swap pool reference. SwapUtils.Swap storage ipool = s.swapStorages[_key]; if (ipool.exists()) { // Swap via the internal pool. return ( ipool.swapInternal( getTokenIndexFromStableSwapPool(_key, _assetIn), getTokenIndexFromStableSwapPool(_key, _assetOut), _amount, _minOut ), _assetOut ); } else { // Otherwise, swap via external stableswap pool. IStableSwap pool = IStableSwap(getConfig(_key).adoptedToLocalExternalPools); IERC20Metadata assetIn = IERC20Metadata(_assetIn); assetIn.safeApprove(address(pool), 0); assetIn.safeIncreaseAllowance(address(pool), _amount); // NOTE: If pool is not registered here, then this call will revert. return ( pool.swapExact(_amount, _assetIn, _assetOut, _minOut, block.timestamp + Constants.DEFAULT_DEADLINE_EXTENSION), _assetOut ); } } /** * @notice Swaps assetIn to assetOut using the stored stable swap or internal swap pool. * @param _key - The hash of the canonical id and domain. * @param _assetIn - The address of the from asset. * @param _assetOut - The address of the to asset. * @param _amountOut - The amount of the _assetOut to swap. * @param _maxIn - The most you will supply to the swap. * @return amountIn The amount of assetIn. Will be 0 if the swap was unsuccessful (slippage * too high). * @return assetOut The address of asset received. */ function _swapAssetOut( bytes32 _key, address _assetIn, address _assetOut, uint256 _amountOut, uint256 _maxIn ) internal returns (uint256, address) { AppStorage storage s = LibConnextStorage.connextStorage(); // Retrieve internal swap pool reference. If it doesn't exist, we'll resort to using an // external stableswap below. SwapUtils.Swap storage ipool = s.swapStorages[_key]; // Swap the asset to the proper local asset. // NOTE: IFF slippage was too high to perform swap in either case: success = false, amountIn = 0 if (ipool.exists()) { // Swap via the internal pool. return ( ipool.swapInternalOut( getTokenIndexFromStableSwapPool(_key, _assetIn), getTokenIndexFromStableSwapPool(_key, _assetOut), _amountOut, _maxIn ), _assetOut ); } else { // Otherwise, swap via external stableswap pool. // NOTE: This call will revert if the external stableswap pool doesn't exist. IStableSwap pool = IStableSwap(getConfig(_key).adoptedToLocalExternalPools); address poolAddress = address(pool); // Perform the swap. // Edge case with some tokens: Example USDT in ETH Mainnet, after the backUnbacked call // there could be a remaining allowance if not the whole amount is pulled by aave. // Later, if we try to increase the allowance it will fail. USDT demands if allowance // is not 0, it has to be set to 0 first. // Example: https://github.com/aave/aave-v3-periphery/blob/ca184e5278bcbc10d28c3dbbc604041d7cfac50b/contracts/adapters/paraswap/ParaSwapRepayAdapter.sol#L138-L140 IERC20Metadata assetIn = IERC20Metadata(_assetIn); assetIn.safeApprove(poolAddress, 0); assetIn.safeIncreaseAllowance(poolAddress, _maxIn); uint256 out = pool.swapExactOut( _amountOut, _assetIn, _assetOut, _maxIn, block.timestamp + Constants.DEFAULT_DEADLINE_EXTENSION ); // Reset allowance assetIn.safeApprove(poolAddress, 0); return (out, _assetOut); } } /** * @notice Calculate amount of tokens you receive on a local bridge asset for the adopted asset * using the stored stable swap * @dev Will not use the stored stable swap if the asset passed in is the local asset * @param _key - The hash of the canonical id and domain * @param _asset - The address of the local asset to swap into the local asset * @param _amount - The amount of the local asset to swap * @return The amount of local asset received from swap * @return The address of asset received post-swap */ function calculateSwapFromLocalAssetIfNeeded( bytes32 _key, address _asset, uint256 _amount ) internal view returns (uint256, address) { AppStorage storage s = LibConnextStorage.connextStorage(); // If the adopted asset is the local asset, no need to swap. TokenConfig storage config = getConfig(_key); address adopted = config.adopted; if (adopted == _asset) { return (_amount, adopted); } SwapUtils.Swap storage ipool = s.swapStorages[_key]; // Calculate the swap using the appropriate pool. if (ipool.exists()) { // Calculate with internal swap pool. uint8 tokenIndexIn = getTokenIndexFromStableSwapPool(_key, _asset); uint8 tokenIndexOut = getTokenIndexFromStableSwapPool(_key, adopted); return (ipool.calculateSwap(tokenIndexIn, tokenIndexOut, _amount), adopted); } else { // Otherwise, try to calculate with external pool. IStableSwap pool = IStableSwap(config.adoptedToLocalExternalPools); // NOTE: This call will revert if no external pool exists. return (pool.calculateSwapFromAddress(_asset, adopted, _amount), adopted); } } /** * @notice Calculate amount of tokens you receive of a local bridge asset for the adopted asset * using the stored stable swap * @dev Will not use the stored stable swap if the asset passed in is the local asset * @param _asset - The address of the asset to swap into the local asset * @param _amount - The amount of the asset to swap * @return The amount of local asset received from swap * @return The address of asset received post-swap */ function calculateSwapToLocalAssetIfNeeded( bytes32 _key, address _asset, address _local, uint256 _amount ) internal view returns (uint256, address) { AppStorage storage s = LibConnextStorage.connextStorage(); // If the asset is the local asset, no swap needed if (_asset == _local) { return (_amount, _local); } SwapUtils.Swap storage ipool = s.swapStorages[_key]; // Calculate the swap using the appropriate pool. if (ipool.exists()) { // if internal swap pool exists uint8 tokenIndexIn = getTokenIndexFromStableSwapPool(_key, _asset); uint8 tokenIndexOut = getTokenIndexFromStableSwapPool(_key, _local); return (ipool.calculateSwap(tokenIndexIn, tokenIndexOut, _amount), _local); } else { IStableSwap pool = IStableSwap(getConfig(_key).adoptedToLocalExternalPools); return (pool.calculateSwapFromAddress(_asset, _local, _amount), _local); } } // ============ Internal: Token ID Helpers ============ /** * @notice Gets the canonical information for a given candidate. * @dev First checks the `address(0)` convention, then checks if the asset given is the * adopted asset, then calculates the local address. * @return TokenId The canonical token ID information for the given candidate. */ function getCanonicalTokenId(address _candidate, AppStorage storage s) internal view returns (TokenId memory) { TokenId memory _canonical; // If candidate is address(0), return an empty `_canonical`. if (_candidate == address(0)) { return _canonical; } // Check to see if candidate is an adopted asset. _canonical = s.adoptedToCanonical[_candidate]; if (_canonical.domain != 0) { // Candidate is an adopted asset, return canonical info. return _canonical; } // Candidate was not adopted; it could be the local address. // IFF this domain is the canonical domain, then the local == canonical. // Otherwise, it will be the representation asset. if (isLocalOrigin(_candidate, s)) { // The token originates on this domain, canonical information is the information // of the candidate _canonical.domain = s.domain; _canonical.id = TypeCasts.addressToBytes32(_candidate); } else { // on a remote domain, return the representation _canonical = s.representationToCanonical[_candidate]; } return _canonical; } /** * @notice Determine if token is of local origin (i.e. it is a locally originating contract, * and NOT a token deployed by the bridge). * @param s AppStorage instance. * @return bool true if token is locally originating, false otherwise. */ function isLocalOrigin(address _token, AppStorage storage s) internal view returns (bool) { // If the token contract WAS deployed by the bridge, it will be stored in this mapping. // If so, the token is NOT of local origin. if (s.representationToCanonical[_token].domain != 0) { return false; } // If the contract was NOT deployed by the bridge, but the contract does exist, then it // IS of local origin. Returns true if code exists at `_addr`. return _token.code.length != 0; } /** * @notice Get the local asset address for a given canonical key, id, and domain. * @param _key - The hash of canonical id and domain. * @param _id Canonical ID. * @param _domain Canonical domain. * @param s AppStorage instance. * @return address of the the local asset. */ function getLocalAsset( bytes32 _key, bytes32 _id, uint32 _domain, AppStorage storage s ) internal view returns (address) { if (_domain == s.domain) { // Token is of local origin return TypeCasts.bytes32ToAddress(_id); } else { // Token is a representation of a token of remote origin return getConfig(_key).representation; } } /** * @notice Calculates the hash of canonical ID and domain. * @dev This hash is used as the key for many asset-related mappings. * @param _id Canonical ID. * @param _domain Canonical domain. * @return bytes32 Canonical hash, used as key for accessing token info from mappings. */ function calculateCanonicalHash(bytes32 _id, uint32 _domain) internal pure returns (bytes32) { return keccak256(abi.encode(_id, _domain)); } // ============ Internal: Math ============ /** * @notice This function calculates slippage as a %age of the amount in, and normalizes * That to the `_out` decimals. * * @dev This *ONLY* works for 1:1 assets * * @param _in The decimals of the asset in / amount in * @param _out The decimals of the target asset * @param _amountIn The starting amount for the swap * @param _slippage The slippage allowed for the swap, in BPS * @return uint256 The minimum amount out for the swap */ function calculateSlippageBoundary( uint8 _in, uint8 _out, uint256 _amountIn, uint256 _slippage ) internal pure returns (uint256) { if (_amountIn == 0) { return 0; } // Get the min recieved (in same decimals as _amountIn) uint256 min = (_amountIn * (Constants.BPS_FEE_DENOMINATOR - _slippage)) / Constants.BPS_FEE_DENOMINATOR; return normalizeDecimals(_in, _out, min); } /** * @notice This function translates the _amount in _in decimals * to _out decimals * * @param _in The decimals of the asset in / amount in * @param _out The decimals of the target asset * @param _amount The value to normalize to the `_out` decimals * @return uint256 Normalized decimals. */ function normalizeDecimals( uint8 _in, uint8 _out, uint256 _amount ) internal pure returns (uint256) { if (_in == _out) { return _amount; } // Convert this value to the same decimals as _out uint256 normalized; if (_in < _out) { normalized = _amount * (10**(_out - _in)); } else { normalized = _amount / (10**(_in - _out)); } return normalized; } }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; library Constants { // ============= Initial Values ============= /** * @notice Sets the initial lp fee at 5 bps */ uint256 public constant INITIAL_LIQUIDITY_FEE_NUMERATOR = 9_995; /** * @notice Sets the initial max routers per transfer */ uint256 public constant INITIAL_MAX_ROUTERS = 5; /** * @notice Sets the initial max routers per transfer */ uint16 public constant INITIAL_AAVE_REFERRAL_CODE = 0; // ============= // ============= Unchangeable Values ============= // ============= Facets /** * @notice Reentrancy modifier for diamond */ uint256 internal constant NOT_ENTERED = 1; /** * @notice Reentrancy modifier for diamond */ uint256 internal constant ENTERED = 2; /** * @notice Contains hash of empty bytes */ bytes32 internal constant EMPTY_HASH = keccak256(""); /** * @notice Denominator for BPS values */ uint256 public constant BPS_FEE_DENOMINATOR = 10_000; /** * @notice Value for delay used on governance */ uint256 public constant GOVERNANCE_DELAY = 7 days; /** * @notice Required gas amount to be leftover after passing in `gasleft` when * executing calldata (see `_executeCalldata` method). */ uint256 public constant EXECUTE_CALLDATA_RESERVE_GAS = 10_000; /** * @notice Portal referral code */ uint16 public constant AAVE_REFERRAL_CODE = 0; // ============= ConnextPriceOracle /** * @notice Valid period for a price delivered by the price oracle */ uint256 public constant ORACLE_VALID_PERIOD = 1 minutes; /** * @notice Valid wiggle room for future timestamps (3s) used by `setDirectPrice` */ uint256 public constant FUTURE_TIME_BUFFER = 3; /** * @notice Defalt decimals values are normalized to */ uint8 public constant DEFAULT_NORMALIZED_DECIMALS = uint8(18); /** * @notice Bytes of return data copied back when using `excessivelySafeCall` */ uint16 public constant DEFAULT_COPY_BYTES = 256; /** * @notice Valid deadline extension used when swapping (1hr) */ uint256 public constant DEFAULT_DEADLINE_EXTENSION = 3600; // ============= Swaps /** * @notice the precision all pools tokens will be converted to * @dev stored here to keep easily in sync between `SwapUtils` and `SwapUtilsExternal` * * The minimum in a pool is 2 (nextUSDC, USDC), and the maximum allowed is 16. While * we do not have pools supporting this number of token, allowing a larger value leaves * the possibility open to pool multiple stable local/adopted pairs, garnering greater * capital efficiency. 16 specifically was chosen as a bit of a sweet spot between the * default of 32 and what we will realistically host in pools. */ uint256 public constant MINIMUM_POOLED_TOKENS = 2; uint256 public constant MAXIMUM_POOLED_TOKENS = 16; /** * @notice the precision all pools tokens will be converted to * @dev stored here to keep easily in sync between `SwapUtils` and `SwapUtilsExternal` */ uint8 public constant POOL_PRECISION_DECIMALS = 18; /** * @notice the denominator used to calculate admin and LP fees. For example, an * LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR) * @dev stored here to keep easily in sync between `SwapUtils` and `SwapUtilsExternal` */ uint256 public constant FEE_DENOMINATOR = 1e10; /** * @notice Max swap fee is 1% or 100bps of each swap * @dev stored here to keep easily in sync between `SwapUtils` and `SwapUtilsExternal` */ uint256 public constant MAX_SWAP_FEE = 1e8; /** * @notice Max adminFee is 100% of the swapFee. adminFee does not add additional fee on top of swapFee. * Instead it takes a certain % of the swapFee. Therefore it has no impact on the * users but only on the earnings of LPs * @dev stored here to keep easily in sync between `SwapUtils` and `SwapUtilsExternal` */ uint256 public constant MAX_ADMIN_FEE = 1e10; /** * @notice constant value used as max loop limit * @dev stored here to keep easily in sync between `SwapUtils` and `SwapUtilsExternal` */ uint256 public constant MAX_LOOP_LIMIT = 256; // Constant value used as max delay time for removing swap after disabled uint256 internal constant REMOVE_DELAY = 7 days; /** * @notice constant values used in ramping A calculations * @dev stored here to keep easily in sync between `SwapUtils` and `SwapUtilsExternal` */ uint256 public constant A_PRECISION = 100; uint256 public constant MAX_A = 10**6; uint256 public constant MAX_A_CHANGE = 2; uint256 public constant MIN_RAMP_TIME = 14 days; uint256 public constant MIN_RAMP_DELAY = 1 days; }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import {IStableSwap} from "../interfaces/IStableSwap.sol"; import {IConnectorManager} from "../../../messaging/interfaces/IConnectorManager.sol"; import {SwapUtils} from "./SwapUtils.sol"; import {TokenId} from "./TokenId.sol"; /** * @notice THIS FILE DEFINES OUR STORAGE LAYOUT AND ID GENERATION SCHEMA. IT CAN ONLY BE MODIFIED FREELY FOR FRESH * DEPLOYS. If you are modifiying this file for an upgrade, you must **CAREFULLY** ensure * the contract storage layout is not impacted. * * BE VERY CAREFUL MODIFYING THE VALUES IN THIS FILE! */ // ============= Enum ============= /// @notice Enum representing address role // Returns uint // None - 0 // Router - 1 // Watcher - 2 // Admin - 3 enum Role { None, RouterAdmin, Watcher, Admin } /** * @notice Enum representing status of destination transfer * @dev Status is only assigned on the destination domain, will always be "none" for the * origin domains * @return uint - Index of value in enum */ enum DestinationTransferStatus { None, // 0 Reconciled, // 1 Executed, // 2 Completed // 3 - executed + reconciled } /** * @notice These are the parameters that will remain constant between the * two chains. They are supplied on `xcall` and should be asserted on `execute` * @property to - The account that receives funds, in the event of a crosschain call, * will receive funds if the call fails. * * @param originDomain - The originating domain (i.e. where `xcall` is called) * @param destinationDomain - The final domain (i.e. where `execute` / `reconcile` are called)\ * @param canonicalDomain - The canonical domain of the asset you are bridging * @param to - The address you are sending funds (and potentially data) to * @param delegate - An address who can execute txs on behalf of `to`, in addition to allowing relayers * @param receiveLocal - If true, will use the local asset on the destination instead of adopted. * @param callData - The data to execute on the receiving chain. If no crosschain call is needed, then leave empty. * @param slippage - Slippage user is willing to accept from original amount in expressed in BPS (i.e. if * a user takes 1% slippage, this is expressed as 1_000) * @param originSender - The msg.sender of the xcall * @param bridgedAmt - The amount sent over the bridge (after potential AMM on xcall) * @param normalizedIn - The amount sent to `xcall`, normalized to 18 decimals * @param nonce - The nonce on the origin domain used to ensure the transferIds are unique * @param canonicalId - The unique identifier of the canonical token corresponding to bridge assets */ struct TransferInfo { uint32 originDomain; uint32 destinationDomain; uint32 canonicalDomain; address to; address delegate; bool receiveLocal; bytes callData; uint256 slippage; address originSender; uint256 bridgedAmt; uint256 normalizedIn; uint256 nonce; bytes32 canonicalId; } /** * @notice * @param params - The TransferInfo. These are consistent across sending and receiving chains. * @param routers - The routers who you are sending the funds on behalf of. * @param routerSignatures - Signatures belonging to the routers indicating permission to use funds * for the signed transfer ID. * @param sequencer - The sequencer who assigned the router path to this transfer. * @param sequencerSignature - Signature produced by the sequencer for path assignment accountability * for the path that was signed. */ struct ExecuteArgs { TransferInfo params; address[] routers; bytes[] routerSignatures; address sequencer; bytes sequencerSignature; } /** * @notice Contains configs for each router * @param approved Whether the router is allowlisted, settable by admin * @param portalApproved Whether the router is allowlisted for portals, settable by admin * @param routerOwners The address that can update the `recipient` * @param proposedRouterOwners Owner candidates * @param proposedRouterTimestamp When owner candidate was proposed (there is a delay to acceptance) */ struct RouterConfig { bool approved; bool portalApproved; address owner; address recipient; address proposed; uint256 proposedTimestamp; } /** * @notice Contains configurations for tokens * @dev Struct will be stored on the hash of the `canonicalId` and `canonicalDomain`. There are also * two separate reverse lookups, that deliver plaintext information based on the passed in address (can * either be representation or adopted address passed in). * * If the decimals are updated in a future token upgrade, the transfers should fail. If that happens, the * asset and swaps must be removed, and then they can be readded * * @param representation Address of minted asset on this domain. If the token is of local origin (meaning it was * originally deployed on this chain), this MUST map to address(0). * @param representationDecimals Decimals of minted asset on this domain * @param adopted Address of adopted asset on this domain * @param adoptedDecimals Decimals of adopted asset on this domain * @param adoptedToLocalExternalPools Holds the AMMs for swapping in and out of local assets * @param approval Allowed assets * @param cap Liquidity caps of whitelisted assets. If 0, no cap is enforced. * @param custodied Custodied balance by address */ struct TokenConfig { address representation; uint8 representationDecimals; address adopted; uint8 adoptedDecimals; address adoptedToLocalExternalPools; bool approval; uint256 cap; uint256 custodied; } struct AppStorage { // // 0 bool initialized; // // Connext // // 1 uint256 LIQUIDITY_FEE_NUMERATOR; /** * @notice The local address that is custodying relayer fees */ // 2 address relayerFeeVault; /** * @notice Nonce for the contract, used to keep unique transfer ids. * @dev Assigned at first interaction (xcall on origin domain). */ // 3 uint256 nonce; /** * @notice The domain this contract exists on. * @dev Must match the domain identifier, which is distinct from the "chainId". */ // 4 uint32 domain; /** * @notice Mapping of adopted to canonical asset information. */ // 5 mapping(address => TokenId) adoptedToCanonical; /** * @notice Mapping of representation to canonical asset information. */ // 6 mapping(address => TokenId) representationToCanonical; /** * @notice Mapping of hash(canonicalId, canonicalDomain) to token config on this domain. */ // 7 mapping(bytes32 => TokenConfig) tokenConfigs; /** * @notice Mapping to track transfer status on destination domain */ // 8 mapping(bytes32 => DestinationTransferStatus) transferStatus; /** * @notice Mapping holding router address that provided fast liquidity. */ // 9 mapping(bytes32 => address[]) routedTransfers; /** * @notice Mapping of router to available balance of an asset. * @dev Routers should always store liquidity that they can expect to receive via the bridge on * this domain (the local asset). */ // 10 mapping(address => mapping(address => uint256)) routerBalances; /** * @notice Mapping of approved relayers * @dev Send relayer fee if msg.sender is approvedRelayer; otherwise revert. */ // 11 mapping(address => bool) approvedRelayers; /** * @notice The max amount of routers a payment can be routed through. */ // 12 uint256 maxRoutersPerTransfer; /** * @notice Stores a mapping of transfer id to slippage overrides. */ // 13 mapping(bytes32 => uint256) slippage; /** * @notice Stores a mapping of transfer id to receive local overrides. */ // 14 mapping(bytes32 => bool) receiveLocalOverride; /** * @notice Stores a mapping of remote routers keyed on domains. * @dev Addresses are cast to bytes32. * This mapping is required because the Connext now contains the BridgeRouter and must implement * the remotes interface. */ // 15 mapping(uint32 => bytes32) remotes; // // ProposedOwnable // // 17 address _proposed; // 18 uint256 _proposedOwnershipTimestamp; // 19 bool _routerAllowlistRemoved; // 20 uint256 _routerAllowlistTimestamp; /** * @notice Stores a mapping of address to Roles * @dev returns uint representing the enum Role value */ // 21 mapping(address => Role) roles; // // RouterFacet // // 22 mapping(address => RouterConfig) routerConfigs; // // ReentrancyGuard // // 23 uint256 _status; // 24 uint256 _xcallStatus; // // StableSwap // /** * @notice Mapping holding the AMM storages for swapping in and out of local assets * @dev Swaps for an adopted asset <> local asset (i.e. POS USDC <> nextUSDC on polygon) * Struct storing data responsible for automatic market maker functionalities. In order to * access this data, this contract uses SwapUtils library. For more details, see SwapUtils.sol. */ // 25 mapping(bytes32 => SwapUtils.Swap) swapStorages; /** * @notice Maps token address to an index in the pool. Used to prevent duplicate tokens in the pool. * @dev getTokenIndex function also relies on this mapping to retrieve token index. */ // 26 mapping(bytes32 => mapping(address => uint8)) tokenIndexes; /** * The address of an existing LPToken contract to use as a target * this target must be the address which connext deployed on this chain. */ // 27 address lpTokenTargetAddress; /** * @notice Stores whether or not bribing, AMMs, have been paused. */ // 28 bool _paused; // // AavePortals // /** * @notice Address of Aave Pool contract. */ // 29 address aavePool; /** * @notice Fee percentage numerator for using Portal liquidity. * @dev Assumes the same basis points as the liquidity fee. */ // 30 uint256 aavePortalFeeNumerator; /** * @notice Mapping to store the transfer liquidity amount provided by Aave Portals. */ // 31 mapping(bytes32 => uint256) portalDebt; /** * @notice Mapping to store the transfer liquidity amount provided by Aave Portals. */ // 32 mapping(bytes32 => uint256) portalFeeDebt; /** * @notice Mapping of approved sequencers * @dev Sequencer address provided must belong to an approved sequencer in order to call `execute` * for the fast liquidity route. */ // 33 mapping(address => bool) approvedSequencers; /** * @notice Remote connection manager for xapp. */ // 34 IConnectorManager xAppConnectionManager; } library LibConnextStorage { function connextStorage() internal pure returns (AppStorage storage ds) { assembly { ds.slot := 0 } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; /******************************************************************************\ * Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) * EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 /******************************************************************************/ import {IDiamondCut} from "../interfaces/IDiamondCut.sol"; // Remember to add the loupe functions from DiamondLoupeFacet to the diamond. // The loupe functions are required by the EIP2535 Diamonds standard library LibDiamond { bytes32 constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage"); struct FacetAddressAndPosition { address facetAddress; uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array } struct FacetFunctionSelectors { bytes4[] functionSelectors; uint256 facetAddressPosition; // position of facetAddress in facetAddresses array } struct DiamondStorage { // maps function selector to the facet address and // the position of the selector in the facetFunctionSelectors.selectors array mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition; // maps facet addresses to function selectors mapping(address => FacetFunctionSelectors) facetFunctionSelectors; // facet addresses address[] facetAddresses; // Used to query if a contract implements an interface. // Used to implement ERC-165. mapping(bytes4 => bool) supportedInterfaces; // owner of the contract address contractOwner; // hash of proposed facets => acceptance time mapping(bytes32 => uint256) acceptanceTimes; // acceptance delay for upgrading facets uint256 acceptanceDelay; } function diamondStorage() internal pure returns (DiamondStorage storage ds) { bytes32 position = DIAMOND_STORAGE_POSITION; assembly { ds.slot := position } } event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function setContractOwner(address _newOwner) internal { DiamondStorage storage ds = diamondStorage(); emit OwnershipTransferred(ds.contractOwner, _newOwner); ds.contractOwner = _newOwner; } function contractOwner() internal view returns (address contractOwner_) { contractOwner_ = diamondStorage().contractOwner; } function acceptanceDelay() internal view returns (uint256) { return diamondStorage().acceptanceDelay; } function acceptanceTime(bytes32 _key) internal view returns (uint256) { return diamondStorage().acceptanceTimes[_key]; } function enforceIsContractOwner() internal view { require(msg.sender == diamondStorage().contractOwner, "LibDiamond: !contract owner"); } event DiamondCutProposed(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata, uint256 deadline); function proposeDiamondCut( IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata ) internal { // NOTE: to save gas, verification that `proposeDiamondCut` and `diamondCut` are not // included is performed in `diamondCut`, where there is already a loop over facets. // In the case where these cuts are performed, admins must call `rescindDiamondCut` DiamondStorage storage ds = diamondStorage(); uint256 acceptance = block.timestamp + ds.acceptanceDelay; ds.acceptanceTimes[keccak256(abi.encode(_diamondCut, _init, _calldata))] = acceptance; emit DiamondCutProposed(_diamondCut, _init, _calldata, acceptance); } event DiamondCutRescinded(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata); function rescindDiamondCut( IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata ) internal { // NOTE: you can always rescind a proposed facet cut as the owner, even if outside of the validity // period or befor the delay elpases delete diamondStorage().acceptanceTimes[keccak256(abi.encode(_diamondCut, _init, _calldata))]; emit DiamondCutRescinded(_diamondCut, _init, _calldata); } event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata); // Internal function version of diamondCut function diamondCut( IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata ) internal { DiamondStorage storage ds = diamondStorage(); bytes32 key = keccak256(abi.encode(_diamondCut, _init, _calldata)); if (ds.facetAddresses.length != 0) { uint256 time = ds.acceptanceTimes[key]; require(time != 0 && time <= block.timestamp, "LibDiamond: delay not elapsed"); // Reset the acceptance time to ensure the same set of updates cannot be replayed // without going through a proposal window // NOTE: the only time this will not be set to 0 is when there are no // existing facet addresses (on initialization, or when starting after a bad upgrade, // for example). // The only relevant case is the initial case, which has no acceptance time. otherwise, // there is no way to update the facet selector mapping to call `diamondCut`. // Avoiding setting the empty value will save gas on the initial deployment. delete ds.acceptanceTimes[key]; } // Otherwise, this is the first instance of deployment and it can be set automatically uint256 len = _diamondCut.length; for (uint256 facetIndex; facetIndex < len; ) { IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action; if (action == IDiamondCut.FacetCutAction.Add) { addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors); } else if (action == IDiamondCut.FacetCutAction.Replace) { replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors); } else if (action == IDiamondCut.FacetCutAction.Remove) { removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors); } else { revert("LibDiamondCut: Incorrect FacetCutAction"); } unchecked { ++facetIndex; } } emit DiamondCut(_diamondCut, _init, _calldata); initializeDiamondCut(_init, _calldata); } function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal { require(_functionSelectors.length != 0, "LibDiamondCut: No selectors in facet to cut"); DiamondStorage storage ds = diamondStorage(); require(_facetAddress != address(0), "LibDiamondCut: Add facet can't be address(0)"); uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length); // add new facet address if it does not exist if (selectorPosition == 0) { addFacet(ds, _facetAddress); } uint256 len = _functionSelectors.length; for (uint256 selectorIndex; selectorIndex < len; ) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress; require(oldFacetAddress == address(0), "LibDiamondCut: Can't add function that already exists"); addFunction(ds, selector, selectorPosition, _facetAddress); selectorPosition++; unchecked { ++selectorIndex; } } } function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal { uint256 len = _functionSelectors.length; require(len != 0, "LibDiamondCut: No selectors in facet to cut"); DiamondStorage storage ds = diamondStorage(); require(_facetAddress != address(0), "LibDiamondCut: Add facet can't be address(0)"); uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length); // add new facet address if it does not exist if (selectorPosition == 0) { addFacet(ds, _facetAddress); } for (uint256 selectorIndex; selectorIndex < len; ) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress; require(oldFacetAddress != _facetAddress, "LibDiamondCut: Can't replace function with same function"); removeFunction(ds, oldFacetAddress, selector); addFunction(ds, selector, selectorPosition, _facetAddress); selectorPosition++; unchecked { ++selectorIndex; } } } function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal { require(_functionSelectors.length != 0, "LibDiamondCut: No selectors in facet to cut"); DiamondStorage storage ds = diamondStorage(); // get the propose and cut selectors -- can never remove these bytes4 proposeSelector = IDiamondCut.proposeDiamondCut.selector; bytes4 cutSelector = IDiamondCut.diamondCut.selector; // if function does not exist then do nothing and return require(_facetAddress == address(0), "LibDiamondCut: Remove facet address must be address(0)"); uint256 len = _functionSelectors.length; for (uint256 selectorIndex; selectorIndex < len; ) { bytes4 selector = _functionSelectors[selectorIndex]; require(selector != proposeSelector && selector != cutSelector, "LibDiamondCut: Cannot remove cut selectors"); address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress; removeFunction(ds, oldFacetAddress, selector); unchecked { ++selectorIndex; } } } function addFacet(DiamondStorage storage ds, address _facetAddress) internal { enforceHasContractCode(_facetAddress, "LibDiamondCut: New facet has no code"); ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length; ds.facetAddresses.push(_facetAddress); } function addFunction( DiamondStorage storage ds, bytes4 _selector, uint96 _selectorPosition, address _facetAddress ) internal { ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition; ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector); ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress; } function removeFunction( DiamondStorage storage ds, address _facetAddress, bytes4 _selector ) internal { require(_facetAddress != address(0), "LibDiamondCut: Can't remove function that doesn't exist"); // an immutable function is a function defined directly in a diamond require(_facetAddress != address(this), "LibDiamondCut: Can't remove immutable function"); // replace selector with last selector, then delete last selector uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition; uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1; // if not the same then replace _selector with lastSelector if (selectorPosition != lastSelectorPosition) { bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition]; ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector; ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition); } // delete the last selector ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop(); delete ds.selectorToFacetAndPosition[_selector]; // if no more selectors for facet address then delete the facet address if (lastSelectorPosition == 0) { // replace facet address with last facet address and delete last facet address uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1; uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition; if (facetAddressPosition != lastFacetAddressPosition) { address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition]; ds.facetAddresses[facetAddressPosition] = lastFacetAddress; ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition; } ds.facetAddresses.pop(); delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition; } } function initializeDiamondCut(address _init, bytes memory _calldata) internal { if (_init == address(0)) { require(_calldata.length == 0, "LibDiamondCut: _init is address(0) but_calldata is not empty"); } else { require(_calldata.length != 0, "LibDiamondCut: _calldata is empty but _init is not address(0)"); if (_init != address(this)) { enforceHasContractCode(_init, "LibDiamondCut: _init address has no code"); } (bool success, bytes memory error) = _init.delegatecall(_calldata); if (!success) { if (error.length != 0) { // bubble up the error revert(string(error)); } else { revert("LibDiamondCut: _init function reverted"); } } } } function enforceHasContractCode(address _contract, string memory _errorMessage) internal view { require(_contract.code.length != 0, _errorMessage); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; /** * @title MathUtils library * @notice A library to be used in conjunction with SafeMath. Contains functions for calculating * differences between two uint256. */ library MathUtils { /** * @notice Compares a and b and returns true if the difference between a and b * is less than 1 or equal to each other. * @param a uint256 to compare with * @param b uint256 to compare with * @return True if the difference between a and b is less than 1 or equal, * otherwise return false */ function within1(uint256 a, uint256 b) internal pure returns (bool) { return (difference(a, b) < 1 + 1); // instead of <=1 } /** * @notice Calculates absolute difference between a and b * @param a uint256 to compare with * @param b uint256 to compare with * @return Difference between a and b */ function difference(uint256 a, uint256 b) internal pure returns (uint256) { if (a > b) { return a - b; } return b - a; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {LPToken} from "../helpers/LPToken.sol"; import {AmplificationUtils} from "./AmplificationUtils.sol"; import {MathUtils} from "./MathUtils.sol"; import {AssetLogic} from "./AssetLogic.sol"; import {Constants} from "./Constants.sol"; /** * @title SwapUtils library * @notice A library to be used within Swap.sol. Contains functions responsible for custody and AMM functionalities. * @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library * for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins. * Admin functions should be protected within contracts using this library. */ library SwapUtils { using SafeERC20 for IERC20; using MathUtils for uint256; /*** EVENTS ***/ event TokenSwap( bytes32 indexed key, address indexed buyer, uint256 tokensSold, uint256 tokensBought, uint128 soldId, uint128 boughtId ); event AddLiquidity( bytes32 indexed key, address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event RemoveLiquidity(bytes32 indexed key, address indexed provider, uint256[] tokenAmounts, uint256 lpTokenSupply); event RemoveLiquidityOne( bytes32 indexed key, address indexed provider, uint256 lpTokenAmount, uint256 lpTokenSupply, uint256 boughtId, uint256 tokensBought ); event RemoveLiquidityImbalance( bytes32 indexed key, address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event NewAdminFee(bytes32 indexed key, uint256 newAdminFee); event NewSwapFee(bytes32 indexed key, uint256 newSwapFee); struct Swap { // variables around the ramp management of A, // the amplification coefficient * n ** (n - 1) // see Curve stableswap paper for details bytes32 key; uint256 initialA; uint256 futureA; uint256 initialATime; uint256 futureATime; // fee calculation uint256 swapFee; uint256 adminFee; LPToken lpToken; // contract references for all tokens being pooled IERC20[] pooledTokens; // multipliers for each pooled token's precision to get to Constants.POOL_PRECISION_DECIMALS // for example, TBTC has 18 decimals, so the multiplier should be 1. WBTC // has 8, so the multiplier should be 10 ** 18 / 10 ** 8 => 10 ** 10 uint256[] tokenPrecisionMultipliers; // the pool balance of each token, in the token's precision // the contract's actual token balance might differ uint256[] balances; // the admin fee balance of each token, in the token's precision uint256[] adminFees; // the flag if this pool disabled by admin. once disabled, only remove liquidity will work. bool disabled; // once pool disabled, admin can remove pool after passed removeTime. and reinitialize. uint256 removeTime; } // Struct storing variables used in calculations in the // calculateWithdrawOneTokenDY function to avoid stack too deep errors struct CalculateWithdrawOneTokenDYInfo { uint256 d0; uint256 d1; uint256 newY; uint256 feePerToken; uint256 preciseA; } // Struct storing variables used in calculations in the // {add,remove}Liquidity functions to avoid stack too deep errors struct ManageLiquidityInfo { uint256 d0; uint256 d1; uint256 d2; uint256 preciseA; LPToken lpToken; uint256 totalSupply; uint256[] balances; uint256[] multipliers; } /*** VIEW & PURE FUNCTIONS ***/ function _getAPrecise(Swap storage self) private view returns (uint256) { return AmplificationUtils._getAPrecise(self); } /** * @notice Calculate the dy, the amount of selected token that user receives and * the fee of withdrawing in one token * @param tokenAmount the amount to withdraw in the pool's precision * @param tokenIndex which token will be withdrawn * @param self Swap struct to read from * @return the amount of token user will receive */ function calculateWithdrawOneToken( Swap storage self, uint256 tokenAmount, uint8 tokenIndex ) internal view returns (uint256) { (uint256 availableTokenAmount, ) = _calculateWithdrawOneToken( self, tokenAmount, tokenIndex, self.lpToken.totalSupply() ); return availableTokenAmount; } function _calculateWithdrawOneToken( Swap storage self, uint256 tokenAmount, uint8 tokenIndex, uint256 totalSupply ) private view returns (uint256, uint256) { uint256 dy; uint256 newY; uint256 currentY; (dy, newY, currentY) = calculateWithdrawOneTokenDY(self, tokenIndex, tokenAmount, totalSupply); // dy_0 (without fees) // dy, dy_0 - dy uint256 dySwapFee = (currentY - newY) / self.tokenPrecisionMultipliers[tokenIndex] - dy; return (dy, dySwapFee); } /** * @notice Calculate the dy of withdrawing in one token * @param self Swap struct to read from * @param tokenIndex which token will be withdrawn * @param tokenAmount the amount to withdraw in the pools precision * @return the d and the new y after withdrawing one token */ function calculateWithdrawOneTokenDY( Swap storage self, uint8 tokenIndex, uint256 tokenAmount, uint256 totalSupply ) internal view returns ( uint256, uint256, uint256 ) { // Get the current D, then solve the stableswap invariant // y_i for D - tokenAmount uint256[] memory xp = _xp(self); require(tokenIndex < xp.length, "index out of range"); CalculateWithdrawOneTokenDYInfo memory v = CalculateWithdrawOneTokenDYInfo(0, 0, 0, 0, 0); v.preciseA = _getAPrecise(self); v.d0 = getD(xp, v.preciseA); v.d1 = v.d0 - ((tokenAmount * v.d0) / totalSupply); require(tokenAmount <= xp[tokenIndex], "exceeds available"); v.newY = getYD(v.preciseA, tokenIndex, xp, v.d1); uint256[] memory xpReduced = new uint256[](xp.length); v.feePerToken = _feePerToken(self.swapFee, xp.length); // TODO: Set a length variable (at top) instead of reading xp.length on each loop. uint256 len = xp.length; for (uint256 i; i < len; ) { uint256 xpi = xp[i]; // if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY // else dxExpected = xp[i] - (xp[i] * d1 / d0) // xpReduced[i] -= dxExpected * fee / Constants.FEE_DENOMINATOR xpReduced[i] = xpi - ((((i == tokenIndex) ? ((xpi * v.d1) / v.d0 - v.newY) : (xpi - (xpi * v.d1) / v.d0)) * v.feePerToken) / Constants.FEE_DENOMINATOR); unchecked { ++i; } } uint256 dy = xpReduced[tokenIndex] - getYD(v.preciseA, tokenIndex, xpReduced, v.d1); dy = (dy - 1) / (self.tokenPrecisionMultipliers[tokenIndex]); return (dy, v.newY, xp[tokenIndex]); } /** * @notice Calculate the price of a token in the pool with given * precision-adjusted balances and a particular D. * * @dev This is accomplished via solving the invariant iteratively. * See the StableSwap paper and Curve.fi implementation for further details. * * x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A) * x_1**2 + b*x_1 = c * x_1 = (x_1**2 + c) / (2*x_1 + b) * * @param a the amplification coefficient * n ** (n - 1). See the StableSwap paper for details. * @param tokenIndex Index of token we are calculating for. * @param xp a precision-adjusted set of pool balances. Array should be * the same cardinality as the pool. * @param d the stableswap invariant * @return the price of the token, in the same precision as in xp */ function getYD( uint256 a, uint8 tokenIndex, uint256[] memory xp, uint256 d ) internal pure returns (uint256) { uint256 numTokens = xp.length; require(tokenIndex < numTokens, "Token not found"); uint256 c = d; uint256 s; uint256 nA = a * numTokens; for (uint256 i; i < numTokens; ) { if (i != tokenIndex) { s += xp[i]; c = (c * d) / (xp[i] * numTokens); // If we were to protect the division loss we would have to keep the denominator separate // and divide at the end. However this leads to overflow with large numTokens or/and D. // c = c * D * D * D * ... overflow! } unchecked { ++i; } } c = (c * d * Constants.A_PRECISION) / (nA * numTokens); uint256 b = s + ((d * Constants.A_PRECISION) / nA); uint256 yPrev; // Select d as the starting point of the Newton method. Because y < D // D is the best option as the starting point in case the pool is very imbalanced. uint256 y = d; for (uint256 i; i < Constants.MAX_LOOP_LIMIT; ) { yPrev = y; y = ((y * y) + c) / ((y * 2) + b - d); if (y.within1(yPrev)) { return y; } unchecked { ++i; } } revert("Approximation did not converge"); } /** * @notice Get D, the StableSwap invariant, based on a set of balances and a particular A. * @param xp a precision-adjusted set of pool balances. Array should be the same cardinality * as the pool. * @param a the amplification coefficient * n ** (n - 1) in A_PRECISION. * See the StableSwap paper for details * @return the invariant, at the precision of the pool */ function getD(uint256[] memory xp, uint256 a) internal pure returns (uint256) { uint256 numTokens = xp.length; uint256 s; for (uint256 i; i < numTokens; ) { s += xp[i]; unchecked { ++i; } } if (s == 0) { return 0; } uint256 prevD; uint256 d = s; uint256 nA = a * numTokens; for (uint256 i; i < Constants.MAX_LOOP_LIMIT; ) { uint256 dP = d; for (uint256 j; j < numTokens; ) { dP = (dP * d) / (xp[j] * numTokens); // If we were to protect the division loss we would have to keep the denominator separate // and divide at the end. However this leads to overflow with large numTokens or/and D. // dP = dP * D * D * D * ... overflow! unchecked { ++j; } } prevD = d; d = (((nA * s) / Constants.A_PRECISION + dP * numTokens) * d) / ((((nA - Constants.A_PRECISION) * d) / Constants.A_PRECISION + (numTokens + 1) * dP)); if (d.within1(prevD)) { return d; } unchecked { ++i; } } // Convergence should occur in 4 loops or less. If this is reached, there may be something wrong // with the pool. If this were to occur repeatedly, LPs should withdraw via `removeLiquidity()` // function which does not rely on D. revert("D does not converge"); } /** * @notice Given a set of balances and precision multipliers, return the * precision-adjusted balances. * * @param balances an array of token balances, in their native precisions. * These should generally correspond with pooled tokens. * * @param precisionMultipliers an array of multipliers, corresponding to * the amounts in the balances array. When multiplied together they * should yield amounts at the pool's precision. * * @return an array of amounts "scaled" to the pool's precision */ function _xp(uint256[] memory balances, uint256[] memory precisionMultipliers) internal pure returns (uint256[] memory) { uint256 numTokens = balances.length; require(numTokens == precisionMultipliers.length, "mismatch multipliers"); uint256[] memory xp = new uint256[](numTokens); for (uint256 i; i < numTokens; ) { xp[i] = balances[i] * precisionMultipliers[i]; unchecked { ++i; } } return xp; } /** * @notice Return the precision-adjusted balances of all tokens in the pool * @param self Swap struct to read from * @return the pool balances "scaled" to the pool's precision, allowing * them to be more easily compared. */ function _xp(Swap storage self) internal view returns (uint256[] memory) { return _xp(self.balances, self.tokenPrecisionMultipliers); } /** * @notice Get the virtual price, to help calculate profit * @param self Swap struct to read from * @return the virtual price, scaled to precision of Constants.POOL_PRECISION_DECIMALS */ function getVirtualPrice(Swap storage self) internal view returns (uint256) { uint256 d = getD(_xp(self), _getAPrecise(self)); LPToken lpToken = self.lpToken; uint256 supply = lpToken.totalSupply(); if (supply != 0) { return (d * (10**uint256(Constants.POOL_PRECISION_DECIMALS))) / supply; } return 0; } /** * @notice Calculate the new balances of the tokens given the indexes of the token * that is swapped from (FROM) and the token that is swapped to (TO). * This function is used as a helper function to calculate how much TO token * the user should receive on swap. * * @param preciseA precise form of amplification coefficient * @param tokenIndexFrom index of FROM token * @param tokenIndexTo index of TO token * @param x the new total amount of FROM token * @param xp balances of the tokens in the pool * @return the amount of TO token that should remain in the pool */ function getY( uint256 preciseA, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 x, uint256[] memory xp ) internal pure returns (uint256) { uint256 numTokens = xp.length; require(tokenIndexFrom != tokenIndexTo, "compare token to itself"); require(tokenIndexFrom < numTokens && tokenIndexTo < numTokens, "token not found"); uint256 d = getD(xp, preciseA); uint256 c = d; uint256 s; uint256 nA = numTokens * preciseA; uint256 _x; for (uint256 i; i < numTokens; ) { if (i == tokenIndexFrom) { _x = x; } else if (i != tokenIndexTo) { _x = xp[i]; } else { unchecked { ++i; } continue; } s += _x; c = (c * d) / (_x * numTokens); // If we were to protect the division loss we would have to keep the denominator separate // and divide at the end. However this leads to overflow with large numTokens or/and D. // c = c * D * D * D * ... overflow! unchecked { ++i; } } c = (c * d * Constants.A_PRECISION) / (nA * numTokens); uint256 b = s + ((d * Constants.A_PRECISION) / nA); uint256 yPrev; uint256 y = d; // iterative approximation for (uint256 i; i < Constants.MAX_LOOP_LIMIT; ) { yPrev = y; y = ((y * y) + c) / ((y * 2) + b - d); if (y.within1(yPrev)) { return y; } unchecked { ++i; } } revert("Approximation did not converge"); } /** * @notice Externally calculates a swap between two tokens. * @param self Swap struct to read from * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dx the number of tokens to sell. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @return dy the number of tokens the user will get */ function calculateSwap( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) internal view returns (uint256 dy) { (dy, ) = _calculateSwap(self, tokenIndexFrom, tokenIndexTo, dx, self.balances); } /** * @notice Externally calculates a swap between two tokens. * @param self Swap struct to read from * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dy the number of tokens to buy. * @return dx the number of tokens the user have to transfer + fee */ function calculateSwapInv( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dy ) internal view returns (uint256 dx) { (dx, ) = _calculateSwapInv(self, tokenIndexFrom, tokenIndexTo, dy, self.balances); } /** * @notice Internally calculates a swap between two tokens. * * @dev The caller is expected to transfer the actual amounts (dx and dy) * using the token contracts. * * @param self Swap struct to read from * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dx the number of tokens to sell. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @return dy the number of tokens the user will get in the token's precision. ex WBTC -> 8 * @return dyFee the associated fee in multiplied precision (Constants.POOL_PRECISION_DECIMALS) */ function _calculateSwap( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256[] memory balances ) internal view returns (uint256 dy, uint256 dyFee) { uint256[] memory multipliers = self.tokenPrecisionMultipliers; uint256[] memory xp = _xp(balances, multipliers); require(tokenIndexFrom < xp.length && tokenIndexTo < xp.length, "index out of range"); uint256 x = dx * multipliers[tokenIndexFrom] + xp[tokenIndexFrom]; uint256 y = getY(_getAPrecise(self), tokenIndexFrom, tokenIndexTo, x, xp); dy = xp[tokenIndexTo] - y - 1; dyFee = (dy * self.swapFee) / Constants.FEE_DENOMINATOR; dy = (dy - dyFee) / multipliers[tokenIndexTo]; } /** * @notice Internally calculates a swap between two tokens. * * @dev The caller is expected to transfer the actual amounts (dx and dy) * using the token contracts. * * @param self Swap struct to read from * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dy the number of tokens to buy. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @return dx the number of tokens the user have to deposit in the token's precision. ex WBTC -> 8 * @return dxFee the associated fee in multiplied precision (Constants.POOL_PRECISION_DECIMALS) */ function _calculateSwapInv( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dy, uint256[] memory balances ) internal view returns (uint256 dx, uint256 dxFee) { require(tokenIndexFrom != tokenIndexTo, "compare token to itself"); uint256[] memory multipliers = self.tokenPrecisionMultipliers; uint256[] memory xp = _xp(balances, multipliers); require(tokenIndexFrom < xp.length && tokenIndexTo < xp.length, "index out of range"); uint256 a = _getAPrecise(self); uint256 d0 = getD(xp, a); xp[tokenIndexTo] = xp[tokenIndexTo] - (dy * multipliers[tokenIndexTo]); uint256 x = getYD(a, tokenIndexFrom, xp, d0); dx = (x + 1) - xp[tokenIndexFrom]; dxFee = (dx * self.swapFee) / Constants.FEE_DENOMINATOR; dx = (dx + dxFee) / multipliers[tokenIndexFrom]; } /** * @notice A simple method to calculate amount of each underlying * tokens that is returned upon burning given amount of * LP tokens * * @param amount the amount of LP tokens that would to be burned on * withdrawal * @return array of amounts of tokens user will receive */ function calculateRemoveLiquidity(Swap storage self, uint256 amount) internal view returns (uint256[] memory) { return _calculateRemoveLiquidity(self.balances, amount, self.lpToken.totalSupply()); } function _calculateRemoveLiquidity( uint256[] memory balances, uint256 amount, uint256 totalSupply ) internal pure returns (uint256[] memory) { require(amount <= totalSupply, "exceed total supply"); uint256 numBalances = balances.length; uint256[] memory amounts = new uint256[](numBalances); for (uint256 i; i < numBalances; ) { amounts[i] = (balances[i] * amount) / totalSupply; unchecked { ++i; } } return amounts; } /** * @notice A simple method to calculate prices from deposits or * withdrawals, excluding fees but including slippage. This is * helpful as an input into the various "min" parameters on calls * to fight front-running * * @dev This shouldn't be used outside frontends for user estimates. * * @param self Swap struct to read from * @param amounts an array of token amounts to deposit or withdrawal, * corresponding to pooledTokens. The amount should be in each * pooled token's native precision. If a token charges a fee on transfers, * use the amount that gets transferred after the fee. * @param deposit whether this is a deposit or a withdrawal * @return if deposit was true, total amount of lp token that will be minted and if * deposit was false, total amount of lp token that will be burned */ function calculateTokenAmount( Swap storage self, uint256[] calldata amounts, bool deposit ) internal view returns (uint256) { uint256[] memory balances = self.balances; uint256 numBalances = balances.length; require(amounts.length == numBalances, "invalid length of amounts"); uint256 a = _getAPrecise(self); uint256[] memory multipliers = self.tokenPrecisionMultipliers; uint256 d0 = getD(_xp(balances, multipliers), a); for (uint256 i; i < numBalances; ) { if (deposit) { balances[i] = balances[i] + amounts[i]; } else { balances[i] = balances[i] - amounts[i]; } unchecked { ++i; } } uint256 d1 = getD(_xp(balances, multipliers), a); uint256 totalSupply = self.lpToken.totalSupply(); if (deposit) { return ((d1 - d0) * totalSupply) / d0; } else { return ((d0 - d1) * totalSupply) / d0; } } /** * @notice return accumulated amount of admin fees of the token with given index * @param self Swap struct to read from * @param index Index of the pooled token * @return admin balance in the token's precision */ function getAdminBalance(Swap storage self, uint256 index) internal view returns (uint256) { require(index < self.pooledTokens.length, "index out of range"); return self.adminFees[index]; } /** * @notice internal helper function to calculate fee per token multiplier used in * swap fee calculations * @param swapFee swap fee for the tokens * @param numTokens number of tokens pooled */ function _feePerToken(uint256 swapFee, uint256 numTokens) internal pure returns (uint256) { return (swapFee * numTokens) / ((numTokens - 1) * 4); } /*** STATE MODIFYING FUNCTIONS ***/ /** * @notice swap two tokens in the pool * @param self Swap struct to read from and write to * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dx the amount of tokens the user wants to sell * @param minDy the min amount the user would like to receive, or revert. * @return amount of token user received on swap */ function swap( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy ) internal returns (uint256) { require(!self.disabled, "disabled pool"); { IERC20 tokenFrom = self.pooledTokens[tokenIndexFrom]; require(dx <= tokenFrom.balanceOf(msg.sender), "swap more than you own"); // Reverts for fee on transfer AssetLogic.handleIncomingAsset(address(tokenFrom), dx); } uint256 dy; uint256 dyFee; uint256[] memory balances = self.balances; (dy, dyFee) = _calculateSwap(self, tokenIndexFrom, tokenIndexTo, dx, balances); require(dy >= minDy, "dy < minDy"); uint256 dyAdminFee = (dyFee * self.adminFee) / Constants.FEE_DENOMINATOR / self.tokenPrecisionMultipliers[tokenIndexTo]; self.balances[tokenIndexFrom] = balances[tokenIndexFrom] + dx; self.balances[tokenIndexTo] = balances[tokenIndexTo] - dy - dyAdminFee; if (dyAdminFee != 0) { self.adminFees[tokenIndexTo] = self.adminFees[tokenIndexTo] + dyAdminFee; } AssetLogic.handleOutgoingAsset(address(self.pooledTokens[tokenIndexTo]), msg.sender, dy); emit TokenSwap(self.key, msg.sender, dx, dy, tokenIndexFrom, tokenIndexTo); return dy; } /** * @notice swap two tokens in the pool * @param self Swap struct to read from and write to * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dy the amount of tokens the user wants to buy * @param maxDx the max amount the user would like to send. * @return amount of token user have to transfer on swap */ function swapOut( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dy, uint256 maxDx ) internal returns (uint256) { require(!self.disabled, "disabled pool"); require(dy <= self.balances[tokenIndexTo], ">pool balance"); uint256 dx; uint256 dxFee; uint256[] memory balances = self.balances; (dx, dxFee) = _calculateSwapInv(self, tokenIndexFrom, tokenIndexTo, dy, balances); require(dx <= maxDx, "dx > maxDx"); uint256 dxAdminFee = (dxFee * self.adminFee) / Constants.FEE_DENOMINATOR / self.tokenPrecisionMultipliers[tokenIndexFrom]; self.balances[tokenIndexFrom] = balances[tokenIndexFrom] + dx - dxAdminFee; self.balances[tokenIndexTo] = balances[tokenIndexTo] - dy; if (dxAdminFee != 0) { self.adminFees[tokenIndexFrom] = self.adminFees[tokenIndexFrom] + dxAdminFee; } { IERC20 tokenFrom = self.pooledTokens[tokenIndexFrom]; require(dx <= tokenFrom.balanceOf(msg.sender), "more than you own"); // Reverts for fee on transfer AssetLogic.handleIncomingAsset(address(tokenFrom), dx); } AssetLogic.handleOutgoingAsset(address(self.pooledTokens[tokenIndexTo]), msg.sender, dy); emit TokenSwap(self.key, msg.sender, dx, dy, tokenIndexFrom, tokenIndexTo); return dx; } /** * @notice swap two tokens in the pool internally * @param self Swap struct to read from and write to * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dx the amount of tokens the user wants to sell * @param minDy the min amount the user would like to receive, or revert. * @return amount of token user received on swap */ function swapInternal( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy ) internal returns (uint256) { require(!self.disabled, "disabled pool"); require(dx <= self.balances[tokenIndexFrom], "more than pool balance"); uint256 dy; uint256 dyFee; uint256[] memory balances = self.balances; (dy, dyFee) = _calculateSwap(self, tokenIndexFrom, tokenIndexTo, dx, balances); require(dy >= minDy, "dy < minDy"); uint256 dyAdminFee = (dyFee * self.adminFee) / Constants.FEE_DENOMINATOR / self.tokenPrecisionMultipliers[tokenIndexTo]; self.balances[tokenIndexFrom] = balances[tokenIndexFrom] + dx; self.balances[tokenIndexTo] = balances[tokenIndexTo] - dy - dyAdminFee; if (dyAdminFee != 0) { self.adminFees[tokenIndexTo] = self.adminFees[tokenIndexTo] + dyAdminFee; } emit TokenSwap(self.key, msg.sender, dx, dy, tokenIndexFrom, tokenIndexTo); return dy; } /** * @notice Should get exact amount out of AMM for asset put in */ function swapInternalOut( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dy, uint256 maxDx ) internal returns (uint256) { require(!self.disabled, "disabled pool"); require(dy <= self.balances[tokenIndexTo], "more than pool balance"); uint256 dx; uint256 dxFee; uint256[] memory balances = self.balances; (dx, dxFee) = _calculateSwapInv(self, tokenIndexFrom, tokenIndexTo, dy, balances); require(dx <= maxDx, "dx > maxDx"); uint256 dxAdminFee = (dxFee * self.adminFee) / Constants.FEE_DENOMINATOR / self.tokenPrecisionMultipliers[tokenIndexFrom]; self.balances[tokenIndexFrom] = balances[tokenIndexFrom] + dx - dxAdminFee; self.balances[tokenIndexTo] = balances[tokenIndexTo] - dy; if (dxAdminFee != 0) { self.adminFees[tokenIndexFrom] = self.adminFees[tokenIndexFrom] + dxAdminFee; } emit TokenSwap(self.key, msg.sender, dx, dy, tokenIndexFrom, tokenIndexTo); return dx; } /** * @notice Add liquidity to the pool * @param self Swap struct to read from and write to * @param amounts the amounts of each token to add, in their native precision * @param minToMint the minimum LP tokens adding this amount of liquidity * should mint, otherwise revert. Handy for front-running mitigation * allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored. * @return amount of LP token user received */ function addLiquidity( Swap storage self, uint256[] memory amounts, uint256 minToMint ) internal returns (uint256) { require(!self.disabled, "disabled pool"); uint256 numTokens = self.pooledTokens.length; require(amounts.length == numTokens, "mismatch pooled tokens"); // current state ManageLiquidityInfo memory v = ManageLiquidityInfo( 0, 0, 0, _getAPrecise(self), self.lpToken, 0, self.balances, self.tokenPrecisionMultipliers ); v.totalSupply = v.lpToken.totalSupply(); if (v.totalSupply != 0) { v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA); } uint256[] memory newBalances = new uint256[](numTokens); for (uint256 i; i < numTokens; ) { require(v.totalSupply != 0 || amounts[i] != 0, "!supply all tokens"); // Transfer tokens first to see if a fee was charged on transfer if (amounts[i] != 0) { IERC20 token = self.pooledTokens[i]; // Reverts for fee on transfer AssetLogic.handleIncomingAsset(address(token), amounts[i]); } newBalances[i] = v.balances[i] + amounts[i]; unchecked { ++i; } } // invariant after change v.d1 = getD(_xp(newBalances, v.multipliers), v.preciseA); require(v.d1 > v.d0, "D should increase"); // updated to reflect fees and calculate the user's LP tokens v.d2 = v.d1; uint256[] memory fees = new uint256[](numTokens); if (v.totalSupply != 0) { uint256 feePerToken = _feePerToken(self.swapFee, numTokens); for (uint256 i; i < numTokens; ) { uint256 idealBalance = (v.d1 * v.balances[i]) / v.d0; fees[i] = (feePerToken * (idealBalance.difference(newBalances[i]))) / Constants.FEE_DENOMINATOR; uint256 adminFee = (fees[i] * self.adminFee) / Constants.FEE_DENOMINATOR; self.balances[i] = newBalances[i] - adminFee; self.adminFees[i] = self.adminFees[i] + adminFee; newBalances[i] = newBalances[i] - fees[i]; unchecked { ++i; } } v.d2 = getD(_xp(newBalances, v.multipliers), v.preciseA); } else { // the initial depositor doesn't pay fees self.balances = newBalances; } uint256 toMint; if (v.totalSupply == 0) { toMint = v.d1; } else { toMint = ((v.d2 - v.d0) * v.totalSupply) / v.d0; } require(toMint >= minToMint, "mint < min"); // mint the user's LP tokens v.lpToken.mint(msg.sender, toMint); emit AddLiquidity(self.key, msg.sender, amounts, fees, v.d1, v.totalSupply + toMint); return toMint; } /** * @notice Burn LP tokens to remove liquidity from the pool. * @dev Liquidity can always be removed, even when the pool is paused. * @param self Swap struct to read from and write to * @param amount the amount of LP tokens to burn * @param minAmounts the minimum amounts of each token in the pool * acceptable for this burn. Useful as a front-running mitigation * @return amounts of tokens the user received */ function removeLiquidity( Swap storage self, uint256 amount, uint256[] calldata minAmounts ) internal returns (uint256[] memory) { LPToken lpToken = self.lpToken; require(amount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf"); uint256 numTokens = self.pooledTokens.length; require(minAmounts.length == numTokens, "mismatch poolTokens"); uint256[] memory balances = self.balances; uint256 totalSupply = lpToken.totalSupply(); uint256[] memory amounts = _calculateRemoveLiquidity(balances, amount, totalSupply); uint256 numAmounts = amounts.length; for (uint256 i; i < numAmounts; ) { require(amounts[i] >= minAmounts[i], "amounts[i] < minAmounts[i]"); self.balances[i] = balances[i] - amounts[i]; AssetLogic.handleOutgoingAsset(address(self.pooledTokens[i]), msg.sender, amounts[i]); unchecked { ++i; } } lpToken.burnFrom(msg.sender, amount); emit RemoveLiquidity(self.key, msg.sender, amounts, totalSupply - amount); return amounts; } /** * @notice Remove liquidity from the pool all in one token. * @param self Swap struct to read from and write to * @param tokenAmount the amount of the lp tokens to burn * @param tokenIndex the index of the token you want to receive * @param minAmount the minimum amount to withdraw, otherwise revert * @return amount chosen token that user received */ function removeLiquidityOneToken( Swap storage self, uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount ) internal returns (uint256) { LPToken lpToken = self.lpToken; require(tokenAmount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf"); uint256 numTokens = self.pooledTokens.length; require(tokenIndex < numTokens, "not found"); uint256 totalSupply = lpToken.totalSupply(); (uint256 dy, uint256 dyFee) = _calculateWithdrawOneToken(self, tokenAmount, tokenIndex, totalSupply); require(dy >= minAmount, "dy < minAmount"); uint256 adminFee = (dyFee * self.adminFee) / Constants.FEE_DENOMINATOR; self.balances[tokenIndex] = self.balances[tokenIndex] - (dy + adminFee); if (adminFee != 0) { self.adminFees[tokenIndex] = self.adminFees[tokenIndex] + adminFee; } lpToken.burnFrom(msg.sender, tokenAmount); AssetLogic.handleOutgoingAsset(address(self.pooledTokens[tokenIndex]), msg.sender, dy); emit RemoveLiquidityOne(self.key, msg.sender, tokenAmount, totalSupply, tokenIndex, dy); return dy; } /** * @notice Remove liquidity from the pool, weighted differently than the * pool's current balances. * * @param self Swap struct to read from and write to * @param amounts how much of each token to withdraw * @param maxBurnAmount the max LP token provider is willing to pay to * remove liquidity. Useful as a front-running mitigation. * @return actual amount of LP tokens burned in the withdrawal */ function removeLiquidityImbalance( Swap storage self, uint256[] memory amounts, uint256 maxBurnAmount ) internal returns (uint256) { ManageLiquidityInfo memory v = ManageLiquidityInfo( 0, 0, 0, _getAPrecise(self), self.lpToken, 0, self.balances, self.tokenPrecisionMultipliers ); v.totalSupply = v.lpToken.totalSupply(); uint256 numTokens = self.pooledTokens.length; uint256 numAmounts = amounts.length; require(numAmounts == numTokens, "mismatch pool tokens"); require(maxBurnAmount <= v.lpToken.balanceOf(msg.sender) && maxBurnAmount != 0, ">LP.balanceOf"); uint256 feePerToken = _feePerToken(self.swapFee, numTokens); uint256[] memory fees = new uint256[](numTokens); { uint256[] memory balances1 = new uint256[](numTokens); v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA); for (uint256 i; i < numTokens; ) { require(v.balances[i] >= amounts[i], "withdraw more than available"); unchecked { balances1[i] = v.balances[i] - amounts[i]; ++i; } } v.d1 = getD(_xp(balances1, v.multipliers), v.preciseA); for (uint256 i; i < numTokens; ) { { uint256 idealBalance = (v.d1 * v.balances[i]) / v.d0; uint256 difference = idealBalance.difference(balances1[i]); fees[i] = (feePerToken * difference) / Constants.FEE_DENOMINATOR; } uint256 adminFee = (fees[i] * self.adminFee) / Constants.FEE_DENOMINATOR; self.balances[i] = balances1[i] - adminFee; self.adminFees[i] = self.adminFees[i] + adminFee; balances1[i] = balances1[i] - fees[i]; unchecked { ++i; } } v.d2 = getD(_xp(balances1, v.multipliers), v.preciseA); } uint256 tokenAmount = ((v.d0 - v.d2) * v.totalSupply) / v.d0; require(tokenAmount != 0, "!zero amount"); tokenAmount = tokenAmount + 1; require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount"); v.lpToken.burnFrom(msg.sender, tokenAmount); for (uint256 i; i < numTokens; ) { AssetLogic.handleOutgoingAsset(address(self.pooledTokens[i]), msg.sender, amounts[i]); unchecked { ++i; } } emit RemoveLiquidityImbalance(self.key, msg.sender, amounts, fees, v.d1, v.totalSupply - tokenAmount); return tokenAmount; } /** * @notice withdraw all admin fees to a given address * @param self Swap struct to withdraw fees from * @param to Address to send the fees to */ function withdrawAdminFees(Swap storage self, address to) internal { uint256 numTokens = self.pooledTokens.length; for (uint256 i; i < numTokens; ) { IERC20 token = self.pooledTokens[i]; uint256 balance = self.adminFees[i]; if (balance != 0) { delete self.adminFees[i]; AssetLogic.handleOutgoingAsset(address(token), to, balance); } unchecked { ++i; } } } /** * @notice Sets the admin fee * @dev adminFee cannot be higher than 100% of the swap fee * @param self Swap struct to update * @param newAdminFee new admin fee to be applied on future transactions */ function setAdminFee(Swap storage self, uint256 newAdminFee) internal { require(newAdminFee < Constants.MAX_ADMIN_FEE + 1, "too high"); self.adminFee = newAdminFee; emit NewAdminFee(self.key, newAdminFee); } /** * @notice update the swap fee * @dev fee cannot be higher than 1% of each swap * @param self Swap struct to update * @param newSwapFee new swap fee to be applied on future transactions */ function setSwapFee(Swap storage self, uint256 newSwapFee) internal { require(newSwapFee < Constants.MAX_SWAP_FEE + 1, "too high"); self.swapFee = newSwapFee; emit NewSwapFee(self.key, newSwapFee); } /** * @notice Check if this stableswap pool exists and is valid (i.e. has been * initialized and tokens have been added). * @return bool true if this stableswap pool is valid, false if not. */ function exists(Swap storage self) internal view returns (bool) { return !self.disabled && self.pooledTokens.length != 0; } }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; // ============= Structs ============= // Tokens are identified by a TokenId: // domain - 4 byte chain ID of the chain from which the token originates // id - 32 byte identifier of the token address on the origin chain, in that chain's address format struct TokenId { uint32 domain; bytes32 id; }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; import {IOutbox} from "./IOutbox.sol"; /** * @notice Each router extends the `XAppConnectionClient` contract. This contract * allows an admin to call `setXAppConnectionManager` to update the underlying * pointers to the messaging inboxes (Replicas) and outboxes (Homes). * * @dev This interface only contains the functions needed for the `XAppConnectionClient` * will interface with. */ interface IConnectorManager { /** * @notice Get the local inbox contract from the xAppConnectionManager * @return The local inbox contract * @dev The local inbox contract is a SpokeConnector with AMBs, and a * Home contract with nomad */ function home() external view returns (IOutbox); /** * @notice Determine whether _potentialReplica is an enrolled Replica from the xAppConnectionManager * @return True if _potentialReplica is an enrolled Replica */ function isReplica(address _potentialReplica) external view returns (bool); /** * @notice Get the local domain from the xAppConnectionManager * @return The local domain */ function localDomain() external view returns (uint32); }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; /** * @notice Interface for all contracts sending messages originating on their * current domain. * * @dev These are the Home.sol interface methods used by the `Router` * and exposed via `home()` on the `XAppConnectionClient` */ interface IOutbox { /** * @notice Emitted when a new message is added to an outbound message merkle root * @param leafIndex Index of message's leaf in merkle tree * @param destinationAndNonce Destination and destination-specific * nonce combined in single field ((destination << 32) & nonce) * @param messageHash Hash of message; the leaf inserted to the Merkle tree for the message * @param committedRoot the latest notarized root submitted in the last signed Update * @param message Raw bytes of message */ event Dispatch( bytes32 indexed messageHash, uint256 indexed leafIndex, uint64 indexed destinationAndNonce, bytes32 committedRoot, bytes message ); /** * @notice Dispatch the message it to the destination domain & recipient * @dev Format the message, insert its hash into Merkle tree, * enqueue the new Merkle root, and emit `Dispatch` event with message information. * @param _destinationDomain Domain of destination chain * @param _recipientAddress Address of recipient on destination chain as bytes32 * @param _messageBody Raw bytes content of message * @return bytes32 The leaf added to the tree */ function dispatch( uint32 _destinationDomain, bytes32 _recipientAddress, bytes memory _messageBody ) external returns (bytes32, bytes memory); }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; import {TypedMemView} from "./TypedMemView.sol"; library TypeCasts { using TypedMemView for bytes; using TypedMemView for bytes29; // alignment preserving cast function addressToBytes32(address _addr) internal pure returns (bytes32) { return bytes32(uint256(uint160(_addr))); } // alignment preserving cast function bytes32ToAddress(bytes32 _buf) internal pure returns (address) { return address(uint160(uint256(_buf))); } }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; library TypedMemView { // Why does this exist? // the solidity `bytes memory` type has a few weaknesses. // 1. You can't index ranges effectively // 2. You can't slice without copying // 3. The underlying data may represent any type // 4. Solidity never deallocates memory, and memory costs grow // superlinearly // By using a memory view instead of a `bytes memory` we get the following // advantages: // 1. Slices are done on the stack, by manipulating the pointer // 2. We can index arbitrary ranges and quickly convert them to stack types // 3. We can insert type info into the pointer, and typecheck at runtime // This makes `TypedMemView` a useful tool for efficient zero-copy // algorithms. // Why bytes29? // We want to avoid confusion between views, digests, and other common // types so we chose a large and uncommonly used odd number of bytes // // Note that while bytes are left-aligned in a word, integers and addresses // are right-aligned. This means when working in assembly we have to // account for the 3 unused bytes on the righthand side // // First 5 bytes are a type flag. // - ff_ffff_fffe is reserved for unknown type. // - ff_ffff_ffff is reserved for invalid types/errors. // next 12 are memory address // next 12 are len // bottom 3 bytes are empty // Assumptions: // - non-modification of memory. // - No Solidity updates // - - wrt free mem point // - - wrt bytes representation in memory // - - wrt memory addressing in general // Usage: // - create type constants // - use `assertType` for runtime type assertions // - - unfortunately we can't do this at compile time yet :( // - recommended: implement modifiers that perform type checking // - - e.g. // - - `uint40 constant MY_TYPE = 3;` // - - ` modifer onlyMyType(bytes29 myView) { myView.assertType(MY_TYPE); }` // - instantiate a typed view from a bytearray using `ref` // - use `index` to inspect the contents of the view // - use `slice` to create smaller views into the same memory // - - `slice` can increase the offset // - - `slice can decrease the length` // - - must specify the output type of `slice` // - - `slice` will return a null view if you try to overrun // - - make sure to explicitly check for this with `notNull` or `assertType` // - use `equal` for typed comparisons. // The null view bytes29 public constant NULL = hex"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"; uint256 constant LOW_12_MASK = 0xffffffffffffffffffffffff; uint256 constant TWENTY_SEVEN_BYTES = 8 * 27; uint256 private constant _27_BYTES_IN_BITS = 8 * 27; // <--- also used this named constant where ever 216 is used. uint256 private constant LOW_27_BYTES_MASK = 0xffffffffffffffffffffffffffffffffffffffffffffffffffffff; // (1 << _27_BYTES_IN_BITS) - 1; // ========== Custom Errors =========== error TypedMemView__assertType_typeAssertionFailed(uint256 actual, uint256 expected); error TypedMemView__index_overrun(uint256 loc, uint256 len, uint256 index, uint256 slice); error TypedMemView__index_indexMoreThan32Bytes(); error TypedMemView__unsafeCopyTo_nullPointer(); error TypedMemView__unsafeCopyTo_invalidPointer(); error TypedMemView__unsafeCopyTo_identityOOG(); error TypedMemView__assertValid_validityAssertionFailed(); /** * @notice Changes the endianness of a uint256. * @dev https://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel * @param _b The unsigned integer to reverse * @return v - The reversed value */ function reverseUint256(uint256 _b) internal pure returns (uint256 v) { v = _b; // swap bytes v = ((v >> 8) & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) | ((v & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) << 8); // swap 2-byte long pairs v = ((v >> 16) & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) | ((v & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) << 16); // swap 4-byte long pairs v = ((v >> 32) & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) | ((v & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) << 32); // swap 8-byte long pairs v = ((v >> 64) & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) | ((v & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) << 64); // swap 16-byte long pairs v = (v >> 128) | (v << 128); } /** * @notice Create a mask with the highest `_len` bits set. * @param _len The length * @return mask - The mask */ function leftMask(uint8 _len) private pure returns (uint256 mask) { // ugly. redo without assembly? assembly { // solhint-disable-previous-line no-inline-assembly mask := sar(sub(_len, 1), 0x8000000000000000000000000000000000000000000000000000000000000000) } } /** * @notice Return the null view. * @return bytes29 - The null view */ function nullView() internal pure returns (bytes29) { return NULL; } /** * @notice Check if the view is null. * @return bool - True if the view is null */ function isNull(bytes29 memView) internal pure returns (bool) { return memView == NULL; } /** * @notice Check if the view is not null. * @return bool - True if the view is not null */ function notNull(bytes29 memView) internal pure returns (bool) { return !isNull(memView); } /** * @notice Check if the view is of a invalid type and points to a valid location * in memory. * @dev We perform this check by examining solidity's unallocated memory * pointer and ensuring that the view's upper bound is less than that. * @param memView The view * @return ret - True if the view is invalid */ function isNotValid(bytes29 memView) internal pure returns (bool ret) { if (typeOf(memView) == 0xffffffffff) { return true; } uint256 _end = end(memView); assembly { // solhint-disable-previous-line no-inline-assembly ret := gt(_end, mload(0x40)) } } /** * @notice Require that a typed memory view be valid. * @dev Returns the view for easy chaining. * @param memView The view * @return bytes29 - The validated view */ function assertValid(bytes29 memView) internal pure returns (bytes29) { if (isNotValid(memView)) revert TypedMemView__assertValid_validityAssertionFailed(); return memView; } /** * @notice Return true if the memview is of the expected type. Otherwise false. * @param memView The view * @param _expected The expected type * @return bool - True if the memview is of the expected type */ function isType(bytes29 memView, uint40 _expected) internal pure returns (bool) { return typeOf(memView) == _expected; } /** * @notice Require that a typed memory view has a specific type. * @dev Returns the view for easy chaining. * @param memView The view * @param _expected The expected type * @return bytes29 - The view with validated type */ function assertType(bytes29 memView, uint40 _expected) internal pure returns (bytes29) { if (!isType(memView, _expected)) { revert TypedMemView__assertType_typeAssertionFailed(uint256(typeOf(memView)), uint256(_expected)); } return memView; } /** * @notice Return an identical view with a different type. * @param memView The view * @param _newType The new type * @return newView - The new view with the specified type */ function castTo(bytes29 memView, uint40 _newType) internal pure returns (bytes29 newView) { // then | in the new type assembly { // solhint-disable-previous-line no-inline-assembly // shift off the top 5 bytes newView := or(and(memView, LOW_27_BYTES_MASK), shl(_27_BYTES_IN_BITS, _newType)) } } /** * @notice Unsafe raw pointer construction. This should generally not be called * directly. Prefer `ref` wherever possible. * @dev Unsafe raw pointer construction. This should generally not be called * directly. Prefer `ref` wherever possible. * @param _type The type * @param _loc The memory address * @param _len The length * @return newView - The new view with the specified type, location and length */ function unsafeBuildUnchecked( uint256 _type, uint256 _loc, uint256 _len ) private pure returns (bytes29 newView) { uint256 _uint96Bits = 96; uint256 _emptyBits = 24; // Cast params to ensure input is of correct length uint96 len_ = uint96(_len); uint96 loc_ = uint96(_loc); require(len_ == _len && loc_ == _loc, "!truncated"); assembly { // solium-disable-previous-line security/no-inline-assembly newView := shl(_uint96Bits, _type) // insert type newView := shl(_uint96Bits, or(newView, loc_)) // insert loc newView := shl(_emptyBits, or(newView, len_)) // empty bottom 3 bytes } } /** * @notice Instantiate a new memory view. This should generally not be called * directly. Prefer `ref` wherever possible. * @dev Instantiate a new memory view. This should generally not be called * directly. Prefer `ref` wherever possible. * @param _type The type * @param _loc The memory address * @param _len The length * @return newView - The new view with the specified type, location and length */ function build( uint256 _type, uint256 _loc, uint256 _len ) internal pure returns (bytes29 newView) { uint256 _end = _loc + _len; assembly { // solhint-disable-previous-line no-inline-assembly if gt(_end, mload(0x40)) { _end := 0 } } if (_end == 0) { return NULL; } newView = unsafeBuildUnchecked(_type, _loc, _len); } /** * @notice Instantiate a memory view from a byte array. * @dev Note that due to Solidity memory representation, it is not possible to * implement a deref, as the `bytes` type stores its len in memory. * @param arr The byte array * @param newType The type * @return bytes29 - The memory view */ function ref(bytes memory arr, uint40 newType) internal pure returns (bytes29) { uint256 _len = arr.length; uint256 _loc; assembly { // solhint-disable-previous-line no-inline-assembly _loc := add(arr, 0x20) // our view is of the data, not the struct } return build(newType, _loc, _len); } /** * @notice Return the associated type information. * @param memView The memory view * @return _type - The type associated with the view */ function typeOf(bytes29 memView) internal pure returns (uint40 _type) { assembly { // solhint-disable-previous-line no-inline-assembly // 216 == 256 - 40 _type := shr(_27_BYTES_IN_BITS, memView) // shift out lower 24 bytes } } /** * @notice Return the memory address of the underlying bytes. * @param memView The view * @return _loc - The memory address */ function loc(bytes29 memView) internal pure returns (uint96 _loc) { uint256 _mask = LOW_12_MASK; // assembly can't use globals assembly { // solhint-disable-previous-line no-inline-assembly // 120 bits = 12 bytes (the encoded loc) + 3 bytes (empty low space) _loc := and(shr(120, memView), _mask) } } /** * @notice The number of memory words this memory view occupies, rounded up. * @param memView The view * @return uint256 - The number of memory words */ function words(bytes29 memView) internal pure returns (uint256) { return (uint256(len(memView)) + 31) / 32; } /** * @notice The in-memory footprint of a fresh copy of the view. * @param memView The view * @return uint256 - The in-memory footprint of a fresh copy of the view. */ function footprint(bytes29 memView) internal pure returns (uint256) { return words(memView) * 32; } /** * @notice The number of bytes of the view. * @param memView The view * @return _len - The length of the view */ function len(bytes29 memView) internal pure returns (uint96 _len) { uint256 _mask = LOW_12_MASK; // assembly can't use globals assembly { // solhint-disable-previous-line no-inline-assembly _len := and(shr(24, memView), _mask) } } /** * @notice Returns the endpoint of `memView`. * @param memView The view * @return uint256 - The endpoint of `memView` */ function end(bytes29 memView) internal pure returns (uint256) { unchecked { return loc(memView) + len(memView); } } /** * @notice Safe slicing without memory modification. * @param memView The view * @param _index The start index * @param _len The length * @param newType The new type * @return bytes29 - The new view */ function slice( bytes29 memView, uint256 _index, uint256 _len, uint40 newType ) internal pure returns (bytes29) { uint256 _loc = loc(memView); // Ensure it doesn't overrun the view if (_loc + _index + _len > end(memView)) { return NULL; } _loc = _loc + _index; return build(newType, _loc, _len); } /** * @notice Shortcut to `slice`. Gets a view representing the first `_len` bytes. * @param memView The view * @param _len The length * @param newType The new type * @return bytes29 - The new view */ function prefix( bytes29 memView, uint256 _len, uint40 newType ) internal pure returns (bytes29) { return slice(memView, 0, _len, newType); } /** * @notice Shortcut to `slice`. Gets a view representing the last `_len` byte. * @param memView The view * @param _len The length * @param newType The new type * @return bytes29 - The new view */ function postfix( bytes29 memView, uint256 _len, uint40 newType ) internal pure returns (bytes29) { return slice(memView, uint256(len(memView)) - _len, _len, newType); } /** * @notice Load up to 32 bytes from the view onto the stack. * @dev Returns a bytes32 with only the `_bytes` highest bytes set. * This can be immediately cast to a smaller fixed-length byte array. * To automatically cast to an integer, use `indexUint`. * @param memView The view * @param _index The index * @param _bytes The bytes * @return result - The 32 byte result */ function index( bytes29 memView, uint256 _index, uint8 _bytes ) internal pure returns (bytes32 result) { if (_bytes == 0) { return bytes32(0); } if (_index + _bytes > len(memView)) { // "TypedMemView/index - Overran the view. Slice is at {loc} with length {len}. Attempted to index at offset {index} with length {slice}, revert TypedMemView__index_overrun(loc(memView), len(memView), _index, uint256(_bytes)); } if (_bytes > 32) revert TypedMemView__index_indexMoreThan32Bytes(); uint8 bitLength; unchecked { bitLength = _bytes * 8; } uint256 _loc = loc(memView); uint256 _mask = leftMask(bitLength); assembly { // solhint-disable-previous-line no-inline-assembly result := and(mload(add(_loc, _index)), _mask) } } /** * @notice Parse an unsigned integer from the view at `_index`. * @dev Requires that the view have >= `_bytes` bytes following that index. * @param memView The view * @param _index The index * @param _bytes The bytes * @return result - The unsigned integer */ function indexUint( bytes29 memView, uint256 _index, uint8 _bytes ) internal pure returns (uint256 result) { return uint256(index(memView, _index, _bytes)) >> ((32 - _bytes) * 8); } /** * @notice Parse an unsigned integer from LE bytes. * @param memView The view * @param _index The index * @param _bytes The bytes * @return result - The unsigned integer */ function indexLEUint( bytes29 memView, uint256 _index, uint8 _bytes ) internal pure returns (uint256 result) { return reverseUint256(uint256(index(memView, _index, _bytes))); } /** * @notice Parse an address from the view at `_index`. Requires that the view have >= 20 bytes * following that index. * @param memView The view * @param _index The index * @return address - The address */ function indexAddress(bytes29 memView, uint256 _index) internal pure returns (address) { return address(uint160(indexUint(memView, _index, 20))); } /** * @notice Return the keccak256 hash of the underlying memory * @param memView The view * @return digest - The keccak256 hash of the underlying memory */ function keccak(bytes29 memView) internal pure returns (bytes32 digest) { uint256 _loc = loc(memView); uint256 _len = len(memView); assembly { // solhint-disable-previous-line no-inline-assembly digest := keccak256(_loc, _len) } } /** * @notice Return true if the underlying memory is equal. Else false. * @param left The first view * @param right The second view * @return bool - True if the underlying memory is equal */ function untypedEqual(bytes29 left, bytes29 right) internal pure returns (bool) { return (loc(left) == loc(right) && len(left) == len(right)) || keccak(left) == keccak(right); } /** * @notice Return false if the underlying memory is equal. Else true. * @param left The first view * @param right The second view * @return bool - False if the underlying memory is equal */ function untypedNotEqual(bytes29 left, bytes29 right) internal pure returns (bool) { return !untypedEqual(left, right); } /** * @notice Compares type equality. * @dev Shortcuts if the pointers are identical, otherwise compares type and digest. * @param left The first view * @param right The second view * @return bool - True if the types are the same */ function equal(bytes29 left, bytes29 right) internal pure returns (bool) { return left == right || (typeOf(left) == typeOf(right) && keccak(left) == keccak(right)); } /** * @notice Compares type inequality. * @dev Shortcuts if the pointers are identical, otherwise compares type and digest. * @param left The first view * @param right The second view * @return bool - True if the types are not the same */ function notEqual(bytes29 left, bytes29 right) internal pure returns (bool) { return !equal(left, right); } /** * @notice Copy the view to a location, return an unsafe memory reference * @dev Super Dangerous direct memory access. * * This reference can be overwritten if anything else modifies memory (!!!). * As such it MUST be consumed IMMEDIATELY. * This function is private to prevent unsafe usage by callers. * @param memView The view * @param _newLoc The new location * @return written - the unsafe memory reference */ function unsafeCopyTo(bytes29 memView, uint256 _newLoc) private view returns (bytes29 written) { if (isNull(memView)) revert TypedMemView__unsafeCopyTo_nullPointer(); if (isNotValid(memView)) revert TypedMemView__unsafeCopyTo_invalidPointer(); uint256 _len = len(memView); uint256 _oldLoc = loc(memView); uint256 ptr; bool res; assembly { // solhint-disable-previous-line no-inline-assembly ptr := mload(0x40) // revert if we're writing in occupied memory if gt(ptr, _newLoc) { revert(0x60, 0x20) // empty revert message } // use the identity precompile to copy // guaranteed not to fail, so pop the success res := staticcall(gas(), 4, _oldLoc, _len, _newLoc, _len) } if (!res) revert TypedMemView__unsafeCopyTo_identityOOG(); written = unsafeBuildUnchecked(typeOf(memView), _newLoc, _len); } /** * @notice Copies the referenced memory to a new loc in memory, returning a `bytes` pointing to * the new memory * @dev Shortcuts if the pointers are identical, otherwise compares type and digest. * @param memView The view * @return ret - The view pointing to the new memory */ function clone(bytes29 memView) internal view returns (bytes memory ret) { uint256 ptr; uint256 _len = len(memView); assembly { // solhint-disable-previous-line no-inline-assembly ptr := mload(0x40) // load unused memory pointer ret := ptr } unchecked { unsafeCopyTo(memView, ptr + 0x20); } assembly { // solhint-disable-previous-line no-inline-assembly mstore(0x40, add(add(ptr, _len), 0x20)) // write new unused pointer mstore(ptr, _len) // write len of new array (in bytes) } } /** * @notice Join the views in memory, return an unsafe reference to the memory. * @dev Super Dangerous direct memory access. * * This reference can be overwritten if anything else modifies memory (!!!). * As such it MUST be consumed IMMEDIATELY. * This function is private to prevent unsafe usage by callers. * @param memViews The views * @return unsafeView - The conjoined view pointing to the new memory */ function unsafeJoin(bytes29[] memory memViews, uint256 _location) private view returns (bytes29 unsafeView) { assembly { // solhint-disable-previous-line no-inline-assembly let ptr := mload(0x40) // revert if we're writing in occupied memory if gt(ptr, _location) { revert(0x60, 0x20) // empty revert message } } uint256 _offset = 0; uint256 _len = memViews.length; for (uint256 i = 0; i < _len; ) { bytes29 memView = memViews[i]; unchecked { unsafeCopyTo(memView, _location + _offset); _offset += len(memView); ++i; } } unsafeView = unsafeBuildUnchecked(0, _location, _offset); } /** * @notice Produce the keccak256 digest of the concatenated contents of multiple views. * @param memViews The views * @return bytes32 - The keccak256 digest */ function joinKeccak(bytes29[] memory memViews) internal view returns (bytes32) { uint256 ptr; assembly { // solhint-disable-previous-line no-inline-assembly ptr := mload(0x40) // load unused memory pointer } return keccak(unsafeJoin(memViews, ptr)); } /** * @notice copies all views, joins them into a new bytearray. * @param memViews The views * @return ret - The new byte array */ function join(bytes29[] memory memViews) internal view returns (bytes memory ret) { uint256 ptr; assembly { // solhint-disable-previous-line no-inline-assembly ptr := mload(0x40) // load unused memory pointer } bytes29 _newView; unchecked { _newView = unsafeJoin(memViews, ptr + 0x20); } uint256 _written = len(_newView); uint256 _footprint = footprint(_newView); assembly { // solhint-disable-previous-line no-inline-assembly // store the legnth mstore(ptr, _written) // new pointer is old + 0x20 + the footprint of the body mstore(0x40, add(add(ptr, _footprint), 0x20)) ret := ptr } } }
{ "evmVersion": "london", "libraries": {}, "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 200 }, "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
[{"inputs":[],"name":"AssetLogic__getConfig_notRegistered","type":"error"},{"inputs":[],"name":"BaseConnextFacet__getAdoptedAsset_assetNotFound","type":"error"},{"inputs":[],"name":"BaseConnextFacet__getApprovedCanonicalId_notAllowlisted","type":"error"},{"inputs":[],"name":"BaseConnextFacet__nonReentrant_reentrantCall","type":"error"},{"inputs":[],"name":"BaseConnextFacet__nonXCallReentrant_reentrantCall","type":"error"},{"inputs":[],"name":"BaseConnextFacet__onlyOwnerOrAdmin_notOwnerOrAdmin","type":"error"},{"inputs":[],"name":"BaseConnextFacet__onlyOwnerOrRouter_notOwnerOrRouter","type":"error"},{"inputs":[],"name":"BaseConnextFacet__onlyOwnerOrWatcher_notOwnerOrWatcher","type":"error"},{"inputs":[],"name":"BaseConnextFacet__onlyOwner_notOwner","type":"error"},{"inputs":[],"name":"BaseConnextFacet__onlyProposed_notProposedOwner","type":"error"},{"inputs":[],"name":"BaseConnextFacet__whenNotPaused_paused","type":"error"},{"inputs":[],"name":"TokenFacet__addAssetId_alreadyAdded","type":"error"},{"inputs":[],"name":"TokenFacet__addAssetId_badBurn","type":"error"},{"inputs":[],"name":"TokenFacet__addAssetId_badMint","type":"error"},{"inputs":[],"name":"TokenFacet__enrollAdoptedAndLocalAssets_emptyCanonical","type":"error"},{"inputs":[],"name":"TokenFacet__removeAssetId_invalidParams","type":"error"},{"inputs":[],"name":"TokenFacet__removeAssetId_notAdded","type":"error"},{"inputs":[],"name":"TokenFacet__removeAssetId_remainsCustodied","type":"error"},{"inputs":[],"name":"TokenFacet__setLiquidityCap_notCanonicalDomain","type":"error"},{"inputs":[],"name":"TokenFacet__setupAssetWithDeployedRepresentation_invalidRepresentation","type":"error"},{"inputs":[],"name":"TokenFacet__setupAssetWithDeployedRepresentation_onCanonicalDomain","type":"error"},{"inputs":[],"name":"TokenFacet__setupAsset_invalidCanonicalConfiguration","type":"error"},{"inputs":[],"name":"TokenFacet__setupAsset_representationListed","type":"error"},{"inputs":[],"name":"TokenFacet__updateDetails_localNotFound","type":"error"},{"inputs":[],"name":"TokenFacet__updateDetails_notApproved","type":"error"},{"inputs":[],"name":"TokenFacet__updateDetails_onlyRemote","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"key","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"canonicalId","type":"bytes32"},{"indexed":true,"internalType":"uint32","name":"domain","type":"uint32"},{"indexed":false,"internalType":"address","name":"adoptedAsset","type":"address"},{"indexed":false,"internalType":"address","name":"localAsset","type":"address"},{"indexed":false,"internalType":"address","name":"caller","type":"address"}],"name":"AssetAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"key","type":"bytes32"},{"indexed":false,"internalType":"address","name":"caller","type":"address"}],"name":"AssetRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"key","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"canonicalId","type":"bytes32"},{"indexed":true,"internalType":"uint32","name":"domain","type":"uint32"},{"indexed":false,"internalType":"uint256","name":"cap","type":"uint256"},{"indexed":false,"internalType":"address","name":"caller","type":"address"}],"name":"LiquidityCapUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"key","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"canonicalId","type":"bytes32"},{"indexed":true,"internalType":"uint32","name":"domain","type":"uint32"},{"indexed":false,"internalType":"address","name":"swapPool","type":"address"},{"indexed":false,"internalType":"address","name":"caller","type":"address"}],"name":"StableSwapAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint32","name":"domain","type":"uint32"},{"indexed":true,"internalType":"bytes32","name":"id","type":"bytes32"},{"indexed":true,"internalType":"address","name":"representation","type":"address"}],"name":"TokenDeployed","type":"event"},{"inputs":[{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"bytes32","name":"id","type":"bytes32"}],"internalType":"struct TokenId","name":"_canonical","type":"tuple"},{"internalType":"address","name":"_stableSwapPool","type":"address"}],"name":"addStableSwapPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_adopted","type":"address"}],"name":"adoptedToCanonical","outputs":[{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"bytes32","name":"id","type":"bytes32"}],"internalType":"struct TokenId","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"bytes32","name":"id","type":"bytes32"}],"internalType":"struct TokenId","name":"_canonical","type":"tuple"}],"name":"adoptedToLocalExternalPools","outputs":[{"internalType":"contract IStableSwap","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_key","type":"bytes32"}],"name":"adoptedToLocalExternalPools","outputs":[{"internalType":"contract IStableSwap","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_key","type":"bytes32"}],"name":"approvedAssets","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"bytes32","name":"id","type":"bytes32"}],"internalType":"struct TokenId","name":"_canonical","type":"tuple"}],"name":"approvedAssets","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_key","type":"bytes32"}],"name":"canonicalToAdopted","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"bytes32","name":"id","type":"bytes32"}],"internalType":"struct TokenId","name":"_canonical","type":"tuple"}],"name":"canonicalToAdopted","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_key","type":"bytes32"}],"name":"canonicalToRepresentation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"bytes32","name":"id","type":"bytes32"}],"internalType":"struct TokenId","name":"_canonical","type":"tuple"}],"name":"canonicalToRepresentation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_key","type":"bytes32"}],"name":"getCustodiedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_id","type":"bytes32"},{"internalType":"uint32","name":"_domain","type":"uint32"}],"name":"getLocalAndAdoptedToken","outputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_candidate","type":"address"}],"name":"getTokenId","outputs":[{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"bytes32","name":"id","type":"bytes32"}],"internalType":"struct TokenId","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"bytes32","name":"id","type":"bytes32"}],"internalType":"struct TokenId","name":"_canonical","type":"tuple"},{"internalType":"address","name":"_adoptedAssetId","type":"address"},{"internalType":"address","name":"_representation","type":"address"}],"name":"removeAssetId","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_key","type":"bytes32"},{"internalType":"address","name":"_adoptedAssetId","type":"address"},{"internalType":"address","name":"_representation","type":"address"}],"name":"removeAssetId","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_representation","type":"address"}],"name":"representationToCanonical","outputs":[{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"bytes32","name":"id","type":"bytes32"}],"internalType":"struct TokenId","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"bytes32","name":"id","type":"bytes32"}],"internalType":"struct TokenId","name":"_canonical","type":"tuple"},{"internalType":"uint8","name":"_canonicalDecimals","type":"uint8"},{"internalType":"string","name":"_representationName","type":"string"},{"internalType":"string","name":"_representationSymbol","type":"string"},{"internalType":"address","name":"_adoptedAssetId","type":"address"},{"internalType":"address","name":"_stableSwapPool","type":"address"},{"internalType":"uint256","name":"_cap","type":"uint256"}],"name":"setupAsset","outputs":[{"internalType":"address","name":"_local","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"bytes32","name":"id","type":"bytes32"}],"internalType":"struct TokenId","name":"_canonical","type":"tuple"},{"internalType":"address","name":"_representation","type":"address"},{"internalType":"address","name":"_adoptedAssetId","type":"address"},{"internalType":"address","name":"_stableSwapPool","type":"address"}],"name":"setupAssetWithDeployedRepresentation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"bytes32","name":"id","type":"bytes32"}],"internalType":"struct TokenId","name":"_canonical","type":"tuple"},{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"}],"name":"updateDetails","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"bytes32","name":"id","type":"bytes32"}],"internalType":"struct TokenId","name":"_canonical","type":"tuple"},{"internalType":"uint256","name":"_updated","type":"uint256"}],"name":"updateLiquidityCap","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
608060405234801561001057600080fd5b50613a2d806100206000396000f3fe60806040523480156200001157600080fd5b5060043610620001455760003560e01c80639b59851911620000bb578063bd8671a7116200007a578063bd8671a714620003ff578063c40584291462000416578063e1cb3958146200042d578063e9d7bcec1462000444578063f1537686146200045b57600080fd5b80639b5985191462000374578063a1b1930114620003a3578063ad4c777114620003ba578063ae8bc0de14620003d1578063b64a5e0714620003e857600080fd5b806357bd0a32116200010857806357bd0a32146200026c5780635a2164e514620002ad5780636006209114620002c457806380dc22481462000328578063949de969146200033f57600080fd5b806303e418c2146200014a57806307a38d7b14620001d45780631506e463146200020c5780631ecf6f9f14620002255780632c1999d01462000255575b600080fd5b620001ae6200015b36600462001a89565b6040805180820190915260008082526020820152506040805180820182526001600160a01b03909216600081815260066020818152938220805463ffffffff168652929091528252600101549082015290565b60408051825163ffffffff16815260209283015192810192909252015b60405180910390f35b620001eb620001e536600462001abc565b62000472565b604080516001600160a01b03938416815292909116602083015201620001cb565b620002236200021d36600462001b04565b62000498565b005b6200023c6200023636600462001b34565b62000534565b6040516001600160a01b039091168152602001620001cb565b6200023c6200026636600462001b34565b62000547565b6200029c6200027d36600462001b34565b600090815260076020526040902060020154600160a01b900460ff1690565b6040519015158152602001620001cb565b62000223620002be36600462001b4e565b62000554565b620001ae620002d536600462001a89565b6040805180820190915260008082526020820152506040805180820182526001600160a01b03909216600081815260056020818152938220805463ffffffff168652929091528252600101549082015290565b6200023c6200033936600462001b99565b620005fc565b620003656200035036600462001b34565b60009081526007602052604090206004015490565b604051908152602001620001cb565b6200023c6200038536600462001b34565b6000908152600760205260409020600201546001600160a01b031690565b62000223620003b436600462001bb8565b62000619565b6200023c620003cb36600462001b99565b620006c6565b6200029c620003e236600462001b99565b620006e9565b6200023c620003f936600462001cae565b62000706565b6200023c6200041036600462001b99565b620008d7565b620002236200042736600462001d71565b620008fa565b6200023c6200043e36600462001def565b62000a96565b620002236200045536600462001e4d565b62000c06565b620001ae6200046c36600462001a89565b62000c97565b6000806200048d62000485858562000cb6565b858562000cf9565b915091509250929050565b33620004a362000d2a565b6001600160a01b031614158015620004e2575060033360009081526014602052604090205460ff166003811115620004df57620004df62001e7b565b14155b156200050157604051637b32c26b60e01b815260040160405180910390fd5b600062000520602084018035906200051a908662001e91565b62000cb6565b90506200052f83838362000d58565b505050565b6000620005418262000df3565b92915050565b6000620005418262000e12565b336200055f62000d2a565b6001600160a01b0316141580156200059e575060033360009081526014602052604090205460ff1660038111156200059b576200059b62001e7b565b14155b15620005bd57604051637b32c26b60e01b815260040160405180910390fd5b6000620005d6602085018035906200051a908762001e91565b9050620005f6818484620005f03689900389018962001eaf565b62000e4e565b50505050565b60006200054162000385602084018035906200051a908662001e91565b336200062462000d2a565b6001600160a01b03161415801562000663575060033360009081526014602052604090205460ff16600381111562000660576200066062001e7b565b14155b156200068257604051637b32c26b60e01b815260040160405180910390fd5b6001600160a01b0382166000908152600560209081526040918290208251808401909352805463ffffffff1683526001015490820152620005f68484848462000e4e565b600062000541620006e3602084018035906200051a908662001e91565b62000df3565b6000620005416200027d602084018035906200051a908662001e91565b6000336200071362000d2a565b6001600160a01b03161415801562000752575060033360009081526014602052604090205460ff1660038111156200074f576200074f62001e7b565b14155b156200077157604051637b32c26b60e01b815260040160405180910390fd5b60006200078a60208a018035906200051a908c62001e91565b60045490915060009063ffffffff16620007a860208c018c62001e91565b63ffffffff161490508015620008385760208a013592506001600160a01b03861615801590620007ea5750826001600160a01b0316866001600160a01b031614155b80620007fe57506001600160a01b03851615155b156200081d5760405163022d833560e01b815260040160405180910390fd5b6200083260018a60008660008f8a89620010cc565b620008ca565b6000828152600760205260409020546001600160a01b0316151580620008755750600082815260076020526040902054600160a01b900460ff1615155b15620008945760405163ae154e0360e01b815260040160405180910390fd5b620008b460208b01803590620008ab908d62001e91565b8b8b8b620016af565b9250620008ca60008a8886898f600089620010cc565b5050979650505050505050565b600062000541620008f4602084018035906200051a908662001e91565b62000e12565b336200090562000d2a565b6001600160a01b03161415801562000944575060033360009081526014602052604090205460ff16600381111562000941576200094162001e7b565b14155b156200096357604051637b32c26b60e01b815260040160405180910390fd5b60006200097c602085018035906200051a908762001e91565b905060006200098b8262001737565b546001600160a01b0316905080620009b657604051639db40a2560e01b815260040160405180910390fd5b620009c5602086018662001e91565b60045463ffffffff918216911603620009f157604051630e5a87cb60e21b815260040160405180910390fd5b600082815260076020526040902060020154600160a01b900460ff1662000a2b57604051634d665d9960e01b815260040160405180910390fd5b604051635bd8487760e11b81526001600160a01b0382169063b7b090ee9062000a5b908790879060040162001f54565b600060405180830381600087803b15801562000a7657600080fd5b505af115801562000a8b573d6000803e3d6000fd5b505050505050505050565b60003362000aa362000d2a565b6001600160a01b03161415801562000ae2575060033360009081526014602052604090205460ff16600381111562000adf5762000adf62001e7b565b14155b1562000b0157604051637b32c26b60e01b815260040160405180910390fd5b6001600160a01b03841662000b2957604051631363580360e21b815260040160405180910390fd5b60045463ffffffff1662000b41602087018762001e91565b63ffffffff160362000b665760405163333de67d60e21b815260040160405180910390fd5b600062000b7f602087018035906200051a908962001e91565b905062000bf96000866001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa15801562000bc6573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000bec919062001f86565b8688878b600088620010cc565b849150505b949350505050565b3362000c1162000d2a565b6001600160a01b03161415801562000c50575060033360009081526014602052604090205460ff16600381111562000c4d5762000c4d62001e7b565b14155b1562000c6f57604051637b32c26b60e01b815260040160405180910390fd5b600062000c88602084018035906200051a908662001e91565b90506200052f83838362001780565b60408051808201909152600080825260208201526200054182620018be565b6000828260405160200162000cdb92919091825263ffffffff16602082015260400190565b60405160208183030381529060405280519060200120905092915050565b600080600062000d0d8686866000620018df565b9050600062000d1c8762000e12565b919791965090945050505050565b7fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320546001600160a01b031690565b600081815260076020908152604090912060020180546001600160a01b0319166001600160a01b03851617905562000d939084018462001e91565b63ffffffff168360200135827f16285b1cf634d546d51fefe55f6e63e5edf970d2a3d2bd50b55a8cfad25e8b56853360405162000de69291906001600160a01b0392831681529116602082015260400190565b60405180910390a4505050565b60008062000e018362001737565b546001600160a01b03169392505050565b60008062000e208362001737565b600101546001600160a01b03169050806200054157604051630558a50760e31b815260040160405180910390fd5b60008481526007602052604090206002810154600160a01b900460ff1662000e8957604051631c999e7d60e11b815260040160405180910390fd5b60018101546001600160a01b03858116911614158062000eb6575080546001600160a01b03848116911614155b1562000ed5576040516318707fc960e31b815260040160405180910390fd5b815160045463ffffffff908116911614801562000f9257600062000efa846020015190565b6040516370a0823160e01b81523060048201529091506000906001600160a01b038316906370a0823190602401602060405180830381865afa15801562000f45573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000f6b919062001fa6565b111562000f8b5760405163454732f160e11b815260040160405180910390fd5b5062001019565b6000846001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa15801562000fd3573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000ff9919062001fa6565b1115620010195760405163454732f160e11b815260040160405180910390fd5b6000868152600760209081526040808320600180820180546001600160a81b0319908116909155600283018054909116905560039091018490556001600160a01b03888116855260068452828520805463ffffffff199081168255908301869055908a16855260058452828520805490911681550192909255905133815287917f9d181adb70e733f5235f839c1eed929407ea8526e41d01f49b9fef703e78dddf910160405180910390a2505050505050565b620010db602084018462001e91565b63ffffffff161580620010f057506020830135155b156200110f576040516375ba0d7960e11b815260040160405180910390fd5b6001600160a01b038616156000816200112957876200112b565b865b905060006200113e602087018762001e91565b60045460008681526007602052604090206002015463ffffffff92831692909116919091149150600160a01b900460ff16156200118e5760405163bfa2bf9b60e01b815260040160405180910390fd5b80620013f3576040516370a0823160e01b815230600482015288906000906001600160a01b038316906370a0823190602401602060405180830381865afa158015620011de573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062001204919062001fa6565b6040516340c10f1960e01b8152306004820152600160248201529091506001600160a01b038316906340c10f1990604401600060405180830381600087803b1580156200125057600080fd5b505af115801562001265573d6000803e3d6000fd5b5050505080600162001278919062001fc0565b6040516370a0823160e01b81523060048201526001600160a01b038416906370a0823190602401602060405180830381865afa158015620012bd573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620012e3919062001fa6565b14620013025760405163016dd8ed60e71b815260040160405180910390fd5b604051632770a7eb60e21b8152306004820152600160248201526001600160a01b03831690639dc29fac90604401600060405180830381600087803b1580156200134b57600080fd5b505af115801562001360573d6000803e3d6000fd5b50506040516370a0823160e01b81523060048201528392506001600160a01b03851691506370a0823190602401602060405180830381865afa158015620013ab573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620013d1919062001fa6565b14620013f05760405163ad6f16e360e01b815260040160405180910390fd5b50505b6040518061010001604052808c6200140c57896200140f565b60005b6001600160a01b031681526020018b60ff168152602001836001600160a01b0316815260200184620014a657836001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa1580156200147a573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620014a0919062001f86565b620014a8565b8b5b60ff90811682526000602080840182905260016040808601829052606080870185905260809687018590528b8552600784529381902087518154898601518816600160a01b9081026001600160a81b03199283166001600160a01b0394851617178455938a01519483018054978b0151909816840296811694821694909417959095179095559486015160028501805460a089015115159097029690921693169290921793909317905560c0830151600382015560e090920151600490920191909155620015799087018762001e91565b6001600160a01b0383166000908152600560209081526040909120805463ffffffff191663ffffffff939093169290921782558701356001909101558a6200161957620015ca602087018762001e91565b6001600160a01b0389166000908152600660209081526040909120805463ffffffff191663ffffffff939093169290921782558701356001909101556200161386888662000d58565b6200162d565b84156200162d576200162d86868662001780565b6200163c602087018762001e91565b63ffffffff168660200135857f0c58c78506e2d526f5ccdba28119c9ca3b5ce48e1462e0e19bc39232db11c632858c336040516200169a939291906001600160a01b0393841681529183166020830152909116604082015260600190565b60405180910390a45050505050505050505050565b6000838383604051620016c29062001a5e565b620016d09392919062001fe2565b604051809103906000f080158015620016ed573d6000803e3d6000fd5b509050806001600160a01b0316868663ffffffff167f84d5e3618bf276f3d29a931646fdd996b398a3efa3cf6bceefc1fe7f0304059f60405160405180910390a495945050505050565b6000818152600760205260408120600180820154839291600160a01b90910460ff161015620017795760405163618cca3f60e11b815260040160405180910390fd5b9392505050565b6200178f602084018462001e91565b60045463ffffffff908116911614620017bb5760405163a56029bd60e01b815260040160405180910390fd5b600081815260076020526040902060030182905581156200185f57600060208401356040516370a0823160e01b81523060048201529091506001600160a01b038216906370a0823190602401602060405180830381865afa15801562001825573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200184b919062001fa6565b600083815260076020526040902060040155505b6200186e602084018462001e91565b63ffffffff168360200135827f8976b61819dcee01042166c2c5612babc4f820a30843a7f8b23c0ddc343f6ef4853360405162000de69291909182526001600160a01b0316602082015260400190565b6040805180820190915260008082526020820152620005418260006200191d565b600481015460009063ffffffff908116908416036200190057508262000bfe565b6200190b8562001737565b546001600160a01b0316905062000bfe565b604080518082019091526000808252602082015260408051808201909152600080825260208201526001600160a01b0384166200195c57905062000541565b506001600160a01b03831660009081526005830160209081526040918290208251808401909352805463ffffffff168084526001909101549183019190915215620019a957905062000541565b620019b5848462001a1d565b15620019dd57600483015463ffffffff1681526001600160a01b038416602082015262001779565b506001600160a01b03831660009081526006830160209081526040918290208251808401909352805463ffffffff16835260010154908201529392505050565b6001600160a01b038216600090815260068201602052604081205463ffffffff161562001a4d5750600062000541565b50506001600160a01b03163b151590565b6119d9806200201f83390190565b80356001600160a01b038116811462001a8457600080fd5b919050565b60006020828403121562001a9c57600080fd5b620017798262001a6c565b803563ffffffff8116811462001a8457600080fd5b6000806040838503121562001ad057600080fd5b8235915062001ae26020840162001aa7565b90509250929050565b60006040828403121562001afe57600080fd5b50919050565b6000806060838503121562001b1857600080fd5b62001b24848462001aeb565b915062001ae26040840162001a6c565b60006020828403121562001b4757600080fd5b5035919050565b60008060006080848603121562001b6457600080fd5b62001b70858562001aeb565b925062001b806040850162001a6c565b915062001b906060850162001a6c565b90509250925092565b60006040828403121562001bac57600080fd5b62001779838362001aeb565b60008060006060848603121562001bce57600080fd5b8335925062001be06020850162001a6c565b915062001b906040850162001a6c565b60ff8116811462001c0057600080fd5b50565b634e487b7160e01b600052604160045260246000fd5b600082601f83011262001c2b57600080fd5b813567ffffffffffffffff8082111562001c495762001c4962001c03565b604051601f8301601f19908116603f0116810190828211818310171562001c745762001c7462001c03565b8160405283815286602085880101111562001c8e57600080fd5b836020870160208301376000602085830101528094505050505092915050565b6000806000806000806000610100888a03121562001ccb57600080fd5b62001cd7898962001aeb565b9650604088013562001ce98162001bf0565b9550606088013567ffffffffffffffff8082111562001d0757600080fd5b62001d158b838c0162001c19565b965060808a013591508082111562001d2c57600080fd5b5062001d3b8a828b0162001c19565b94505062001d4c60a0890162001a6c565b925062001d5c60c0890162001a6c565b915060e0880135905092959891949750929550565b60008060006080848603121562001d8757600080fd5b62001d93858562001aeb565b9250604084013567ffffffffffffffff8082111562001db157600080fd5b62001dbf8783880162001c19565b9350606086013591508082111562001dd657600080fd5b5062001de58682870162001c19565b9150509250925092565b60008060008060a0858703121562001e0657600080fd5b62001e12868662001aeb565b935062001e226040860162001a6c565b925062001e326060860162001a6c565b915062001e426080860162001a6c565b905092959194509250565b6000806060838503121562001e6157600080fd5b62001e6d848462001aeb565b946040939093013593505050565b634e487b7160e01b600052602160045260246000fd5b60006020828403121562001ea457600080fd5b620017798262001aa7565b60006040828403121562001ec257600080fd5b6040516040810181811067ffffffffffffffff8211171562001ee85762001ee862001c03565b60405262001ef68362001aa7565b8152602083013560208201528091505092915050565b6000815180845260005b8181101562001f345760208185018101518683018201520162001f16565b506000602082860101526020601f19601f83011685010191505092915050565b60408152600062001f69604083018562001f0c565b828103602084015262001f7d818562001f0c565b95945050505050565b60006020828403121562001f9957600080fd5b8151620017798162001bf0565b60006020828403121562001fb957600080fd5b5051919050565b808201808211156200054157634e487b7160e01b600052601160045260246000fd5b60ff8416815260606020820152600062002000606083018562001f0c565b828103604084015262002014818562001f0c565b969550505050505056fe60e06040523480156200001157600080fd5b50604051620019d9380380620019d9833981016040819052620000349162000245565b828282604051806040016040528060018152602001603160f81b8152506200006b620000656200012c60201b60201c565b62000130565b600462000079848262000358565b50600562000088838262000358565b506006805460ff191660ff9590951694909417909355508051602091820120825192820192909220600983905560c0818152466080818152604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f818801528082019790975260608701949094528501523060a08086018290528351808703820181529590920190925283519390920192909220600855525062000424915050565b3390565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b634e487b7160e01b600052604160045260246000fd5b600082601f830112620001a857600080fd5b81516001600160401b0380821115620001c557620001c562000180565b604051601f8301601f19908116603f01168101908282118183101715620001f057620001f062000180565b816040528381526020925086838588010111156200020d57600080fd5b600091505b8382101562000231578582018301518183018401529082019062000212565b600093810190920192909252949350505050565b6000806000606084860312156200025b57600080fd5b835160ff811681146200026d57600080fd5b60208501519093506001600160401b03808211156200028b57600080fd5b620002998783880162000196565b93506040860151915080821115620002b057600080fd5b50620002bf8682870162000196565b9150509250925092565b600181811c90821680620002de57607f821691505b602082108103620002ff57634e487b7160e01b600052602260045260246000fd5b50919050565b601f8211156200035357600081815260208120601f850160051c810160208610156200032e5750805b601f850160051c820191505b818110156200034f578281556001016200033a565b5050505b505050565b81516001600160401b0381111562000374576200037462000180565b6200038c81620003858454620002c9565b8462000305565b602080601f831160018114620003c45760008415620003ab5750858301515b600019600386901b1c1916600185901b1785556200034f565b600085815260208120601f198616915b82811015620003f557888601518255948401946001909101908401620003d4565b5085821015620004145787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b60805160a05160c05161157e6200045b600039600081816105400152610ba601526000610b2501526000610b4f015261157e6000f3fe608060405234801561001057600080fd5b506004361061012c5760003560e01c80637ecebe00116100ad578063a9059cbb11610071578063a9059cbb14610269578063b7b090ee1461027c578063d505accf1461028f578063dd62ed3e146102a2578063f2fde38b146102b557600080fd5b80637ecebe001461020d5780638da5cb5b1461022057806395d89b411461023b5780639dc29fac14610243578063a457c2d71461025657600080fd5b80633644e515116100f45780633644e515146101ac57806339509351146101b457806340c10f19146101c757806370a08231146101dc578063715018a61461020557600080fd5b806306fdde0314610131578063095ea7b31461014f57806318160ddd1461017257806323b872dd14610184578063313ce56714610197575b600080fd5b6101396102c8565b604051610146919061115b565b60405180910390f35b61016261015d3660046111c5565b61035a565b6040519015158152602001610146565b6003545b604051908152602001610146565b6101626101923660046111ef565b610371565b60065460405160ff9091168152602001610146565b610176610393565b6101626101c23660046111c5565b6103a2565b6101da6101d53660046111c5565b6103de565b005b6101766101ea36600461122b565b6001600160a01b031660009081526001602052604090205490565b6101da6103f4565b61017661021b36600461122b565b610408565b6000546040516001600160a01b039091168152602001610146565b610139610426565b6101da6102513660046111c5565b610435565b6101626102643660046111c5565b610447565b6101626102773660046111c5565b6104c6565b6101da61028a366004611296565b6104d3565b6101da61029d366004611302565b6105c6565b6101766102b0366004611375565b61072a565b6101da6102c336600461122b565b610755565b6060600480546102d7906113a8565b80601f0160208091040260200160405190810160405280929190818152602001828054610303906113a8565b80156103505780601f1061032557610100808354040283529160200191610350565b820191906000526020600020905b81548152906001019060200180831161033357829003601f168201915b5050505050905090565b60006103673384846107ce565b5060015b92915050565b600061037e8433846108f3565b61038984848461096d565b5060019392505050565b600061039d610b18565b905090565b3360008181526002602090815260408083206001600160a01b038716845290915281205490916103679185906103d99086906113dc565b6107ce565b6103e6610bca565b6103f08282610c24565b5050565b6103fc610bca565b6104066000610ce5565b565b6001600160a01b03811660009081526007602052604081205461036b565b6060600580546102d7906113a8565b61043d610bca565b6103f08282610d35565b600080610454338561072a565b9050828110156104b95760405162461bcd60e51b815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b60648201526084015b60405180910390fd5b61038933858584036107ce565b600061036733848461096d565b6104db610bca565b60046104e8848683611461565b5060056104f6828483611461565b5060008484604051610509929190611522565b604051908190039020600981905590506105647f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f827f0000000000000000000000000000000000000000000000000000000000000000610e66565b6008556040516105779084908490611522565b6040518091039020858560405161058f929190611522565b604051908190038120907f1ec4c73af923253fb2c28a509dd78d342709289a09929d78c64c0b8e047efbcd90600090a35050505050565b834211156106165760405162461bcd60e51b815260206004820152601d60248201527f45524332305065726d69743a206578706972656420646561646c696e6500000060448201526064016104b0565b60007f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886106458c610eaf565b6040805160208101969096526001600160a01b0394851690860152929091166060840152608083015260a082015260c0810186905260e00160405160208183030381529060405280519060200120905060006106a082610ed7565b905060006106b082878787610f25565b9050896001600160a01b0316816001600160a01b0316146107135760405162461bcd60e51b815260206004820152601e60248201527f45524332305065726d69743a20696e76616c6964207369676e6174757265000060448201526064016104b0565b61071e8a8a8a6107ce565b50505050505050505050565b6001600160a01b03918216600090815260026020908152604080832093909416825291909152205490565b61075d610bca565b6001600160a01b0381166107c25760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084016104b0565b6107cb81610ce5565b50565b6001600160a01b0383166108305760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b60648201526084016104b0565b6001600160a01b0382166108915760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b60648201526084016104b0565b6001600160a01b0383811660008181526002602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591015b60405180910390a3505050565b60006108ff848461072a565b90506000198114610967578181101561095a5760405162461bcd60e51b815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e636500000060448201526064016104b0565b61096784848484036107ce565b50505050565b6001600160a01b0383166109d15760405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604482015264647265737360d81b60648201526084016104b0565b6001600160a01b038216610a335760405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201526265737360e81b60648201526084016104b0565b6001600160a01b03831660009081526001602052604090205481811015610aab5760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b60648201526084016104b0565b6001600160a01b0380851660008181526001602052604080822086860390559286168082529083902080548601905591517fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90610b0b9086815260200190565b60405180910390a3610967565b6000306001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016148015610b7157507f000000000000000000000000000000000000000000000000000000000000000046145b15610b7d575060085490565b61039d7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6009547f0000000000000000000000000000000000000000000000000000000000000000610e66565b6000546001600160a01b031633146104065760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016104b0565b6001600160a01b038216610c7a5760405162461bcd60e51b815260206004820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f20616464726573730060448201526064016104b0565b8060036000828254610c8c91906113dc565b90915550506001600160a01b0382166000818152600160209081526040808320805486019055518481527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a35050565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6001600160a01b038216610d955760405162461bcd60e51b815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f206164647265736044820152607360f81b60648201526084016104b0565b6001600160a01b03821660009081526001602052604090205481811015610e095760405162461bcd60e51b815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e604482015261636560f01b60648201526084016104b0565b6001600160a01b03831660008181526001602090815260408083208686039055600380548790039055518581529192917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91016108e6565b505050565b6040805160208101859052908101839052606081018290524660808201523060a082015260009060c0016040516020818303038152906040528051906020012090509392505050565b6001600160a01b03811660009081526007602052604090208054600181018255905b50919050565b600061036b610ee4610b18565b8360405161190160f01b6020820152602281018390526042810182905260009060620160405160208183030381529060405280519060200120905092915050565b6000806000610f3687878787610f4d565b91509150610f4381611011565b5095945050505050565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831115610f845750600090506003611008565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610fd8573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b03811661100157600060019250925050611008565b9150600090505b94509492505050565b600081600481111561102557611025611532565b0361102d5750565b600181600481111561104157611041611532565b0361108e5760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e6174757265000000000000000060448201526064016104b0565b60028160048111156110a2576110a2611532565b036110ef5760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e6774680060448201526064016104b0565b600381600481111561110357611103611532565b036107cb5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b60648201526084016104b0565b600060208083528351808285015260005b818110156111885785810183015185820160400152820161116c565b506000604082860101526040601f19601f8301168501019250505092915050565b80356001600160a01b03811681146111c057600080fd5b919050565b600080604083850312156111d857600080fd5b6111e1836111a9565b946020939093013593505050565b60008060006060848603121561120457600080fd5b61120d846111a9565b925061121b602085016111a9565b9150604084013590509250925092565b60006020828403121561123d57600080fd5b611246826111a9565b9392505050565b60008083601f84011261125f57600080fd5b50813567ffffffffffffffff81111561127757600080fd5b60208301915083602082850101111561128f57600080fd5b9250929050565b600080600080604085870312156112ac57600080fd5b843567ffffffffffffffff808211156112c457600080fd5b6112d08883890161124d565b909650945060208701359150808211156112e957600080fd5b506112f68782880161124d565b95989497509550505050565b600080600080600080600060e0888a03121561131d57600080fd5b611326886111a9565b9650611334602089016111a9565b95506040880135945060608801359350608088013560ff8116811461135857600080fd5b9699959850939692959460a0840135945060c09093013592915050565b6000806040838503121561138857600080fd5b611391836111a9565b915061139f602084016111a9565b90509250929050565b600181811c908216806113bc57607f821691505b602082108103610ed157634e487b7160e01b600052602260045260246000fd5b8082018082111561036b57634e487b7160e01b600052601160045260246000fd5b634e487b7160e01b600052604160045260246000fd5b601f821115610e6157600081815260208120601f850160051c8101602086101561143a5750805b601f850160051c820191505b8181101561145957828155600101611446565b505050505050565b67ffffffffffffffff831115611479576114796113fd565b61148d8361148783546113a8565b83611413565b6000601f8411600181146114c157600085156114a95750838201355b600019600387901b1c1916600186901b17835561151b565b600083815260209020601f19861690835b828110156114f257868501358255602094850194600190920191016114d2565b508682101561150f5760001960f88860031b161c19848701351681555b505060018560011b0183555b5050505050565b8183823760009101908152919050565b634e487b7160e01b600052602160045260246000fdfea26469706673582212208113c928e03165e19b5c7ac5b67b85c32ab586cd042677306fbd142d27afccf664736f6c63430008110033a2646970667358221220300cc646d0359b86871a6e263ab844429c60311081ebea2afdd51b016410d91c64736f6c63430008110033
Age | Block | Fee Address | BC Fee Address | Voting Power | Jailed | Incoming |
---|