Contract Overview
Balance:
0 ETH
My Name Tag:
Not Available
Txn Hash | Method |
Block
|
From
|
To
|
Value | [Txn Fee] | |||
---|---|---|---|---|---|---|---|---|---|
0x7ef113218e19be879df2a341734e247e3d838d2f6509acf5d64262003b6ff0fc | 0x60806040 | 13188040 | 66 days 14 hrs ago | 0xa2ee8dcd2a8a3a54cf37f6590e5108bbe502b006 | IN | Create: BridgeFacet | 0 ETH | 0.00338819 |
[ Download CSV Export ]
Latest 25 internal transaction
[ Download CSV Export ]
Contract Source Code Verified (Exact Match)
Contract Name:
BridgeFacet
Compiler Version
v0.8.17+commit.8df45f5f
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Internal function that returns the initialized version. Returns `_initialized` */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Internal function that returns the initialized version. Returns `_initializing` */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20Upgradeable.sol"; import "./extensions/IERC20MetadataUpgradeable.sol"; import "../../utils/ContextUpgradeable.sol"; import "../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing { __ERC20_init_unchained(name_, symbol_); } function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[45] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20Upgradeable { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/extensions/ERC20Burnable.sol) pragma solidity ^0.8.0; import "../ERC20Upgradeable.sol"; import "../../../utils/ContextUpgradeable.sol"; import "../../../proxy/utils/Initializable.sol"; /** * @dev Extension of {ERC20} that allows token holders to destroy both their own * tokens and those that they have an allowance for, in a way that can be * recognized off-chain (via event analysis). */ abstract contract ERC20BurnableUpgradeable is Initializable, ContextUpgradeable, ERC20Upgradeable { function __ERC20Burnable_init() internal onlyInitializing { } function __ERC20Burnable_init_unchained() internal onlyInitializing { } /** * @dev Destroys `amount` tokens from the caller. * * See {ERC20-_burn}. */ function burn(uint256 amount) public virtual { _burn(_msgSender(), amount); } /** * @dev Destroys `amount` tokens from `account`, deducting from the caller's * allowance. * * See {ERC20-_burn} and {ERC20-allowance}. * * Requirements: * * - the caller must have allowance for ``accounts``'s tokens of at least * `amount`. */ function burnFrom(address account, uint256 amount) public virtual { _spendAllowance(account, _msgSender(), amount); _burn(account, amount); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20Upgradeable.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20MetadataUpgradeable is IERC20Upgradeable { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import {TransferInfo, AppStorage, Role} from "../libraries/LibConnextStorage.sol"; import {LibDiamond} from "../libraries/LibDiamond.sol"; import {AssetLogic} from "../libraries/AssetLogic.sol"; import {TokenId} from "../libraries/TokenId.sol"; import {Constants} from "../libraries/Constants.sol"; contract BaseConnextFacet { AppStorage internal s; // ========== Custom Errors =========== error BaseConnextFacet__onlyOwner_notOwner(); error BaseConnextFacet__onlyProposed_notProposedOwner(); error BaseConnextFacet__onlyOwnerOrRouter_notOwnerOrRouter(); error BaseConnextFacet__onlyOwnerOrWatcher_notOwnerOrWatcher(); error BaseConnextFacet__onlyOwnerOrAdmin_notOwnerOrAdmin(); error BaseConnextFacet__whenNotPaused_paused(); error BaseConnextFacet__nonReentrant_reentrantCall(); error BaseConnextFacet__nonXCallReentrant_reentrantCall(); error BaseConnextFacet__getAdoptedAsset_assetNotFound(); error BaseConnextFacet__getApprovedCanonicalId_notAllowlisted(); // ============ Modifiers ============ /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true if (s._status == Constants.ENTERED) revert BaseConnextFacet__nonReentrant_reentrantCall(); // Any calls to nonReentrant after this point will fail s._status = Constants.ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) s._status = Constants.NOT_ENTERED; } modifier nonXCallReentrant() { // On the first call to nonReentrant, _notEntered will be true if (s._xcallStatus == Constants.ENTERED) revert BaseConnextFacet__nonXCallReentrant_reentrantCall(); // Any calls to nonReentrant after this point will fail s._xcallStatus = Constants.ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) s._xcallStatus = Constants.NOT_ENTERED; } /** * @notice Throws if called by any account other than the owner. */ modifier onlyOwner() { if (LibDiamond.contractOwner() != msg.sender) revert BaseConnextFacet__onlyOwner_notOwner(); _; } /** * @notice Throws if called by any account other than the proposed owner. */ modifier onlyProposed() { if (s._proposed != msg.sender) revert BaseConnextFacet__onlyProposed_notProposedOwner(); _; } /** * @notice Throws if called by any account other than the owner and router role. */ modifier onlyOwnerOrRouter() { if (LibDiamond.contractOwner() != msg.sender && s.roles[msg.sender] != Role.RouterAdmin) revert BaseConnextFacet__onlyOwnerOrRouter_notOwnerOrRouter(); _; } /** * @notice Throws if called by any account other than the owner and watcher role. */ modifier onlyOwnerOrWatcher() { if (LibDiamond.contractOwner() != msg.sender && s.roles[msg.sender] != Role.Watcher) revert BaseConnextFacet__onlyOwnerOrWatcher_notOwnerOrWatcher(); _; } /** * @notice Throws if called by any account other than the owner and admin role. */ modifier onlyOwnerOrAdmin() { if (LibDiamond.contractOwner() != msg.sender && s.roles[msg.sender] != Role.Admin) revert BaseConnextFacet__onlyOwnerOrAdmin_notOwnerOrAdmin(); _; } /** * @notice Throws if all functionality is paused */ modifier whenNotPaused() { if (s._paused) revert BaseConnextFacet__whenNotPaused_paused(); _; } // ============ Internal functions ============ /** * @notice Indicates if the router allowlist has been removed */ function _isRouterAllowlistRemoved() internal view returns (bool) { return LibDiamond.contractOwner() == address(0) || s._routerAllowlistRemoved; } /** * @notice Returns the adopted assets for given canonical information */ function _getAdoptedAsset(bytes32 _key) internal view returns (address) { address adopted = AssetLogic.getConfig(_key).adopted; if (adopted == address(0)) { revert BaseConnextFacet__getAdoptedAsset_assetNotFound(); } return adopted; } /** * @notice Returns the adopted assets for given canonical information */ function _getRepresentationAsset(bytes32 _key) internal view returns (address) { address representation = AssetLogic.getConfig(_key).representation; // If this is address(0), then there is no mintable token for this asset on this // domain return representation; } /** * @notice Calculates a transferId */ function _calculateTransferId(TransferInfo memory _params) internal pure returns (bytes32) { return keccak256(abi.encode(_params)); } /** * @notice Internal utility function that combines * `_origin` and `_nonce`. * @dev Both origin and nonce should be less than 2^32 - 1 * @param _origin Domain of chain where the transfer originated * @param _nonce The unique identifier for the message from origin to destination * @return Returns (`_origin` << 32) & `_nonce` */ function _originAndNonce(uint32 _origin, uint32 _nonce) internal pure returns (uint64) { return (uint64(_origin) << 32) | _nonce; } function _getLocalAsset( bytes32 _key, bytes32 _id, uint32 _domain ) internal view returns (address) { return AssetLogic.getLocalAsset(_key, _id, _domain, s); } function _getCanonicalTokenId(address _candidate) internal view returns (TokenId memory) { return AssetLogic.getCanonicalTokenId(_candidate, s); } function _getLocalAndAdoptedToken( bytes32 _key, bytes32 _id, uint32 _domain ) internal view returns (address, address) { address _local = AssetLogic.getLocalAsset(_key, _id, _domain, s); address _adopted = _getAdoptedAsset(_key); return (_local, _adopted); } function _isLocalOrigin(address _token) internal view returns (bool) { return AssetLogic.isLocalOrigin(_token, s); } function _getApprovedCanonicalId(address _candidate) internal view returns (TokenId memory, bytes32) { TokenId memory _canonical = _getCanonicalTokenId(_candidate); bytes32 _key = AssetLogic.calculateCanonicalHash(_canonical.id, _canonical.domain); if (!AssetLogic.getConfig(_key).approval) { revert BaseConnextFacet__getApprovedCanonicalId_notAllowlisted(); } return (_canonical, _key); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import {Address} from "@openzeppelin/contracts/utils/Address.sol"; import {ExcessivelySafeCall} from "../../../shared/libraries/ExcessivelySafeCall.sol"; import {TypedMemView} from "../../../shared/libraries/TypedMemView.sol"; import {TypeCasts} from "../../../shared/libraries/TypeCasts.sol"; import {IOutbox} from "../../../messaging/interfaces/IOutbox.sol"; import {IConnectorManager} from "../../../messaging/interfaces/IConnectorManager.sol"; import {BaseConnextFacet} from "./BaseConnextFacet.sol"; import {AssetLogic} from "../libraries/AssetLogic.sol"; import {ExecuteArgs, TransferInfo, DestinationTransferStatus, TokenConfig} from "../libraries/LibConnextStorage.sol"; import {BridgeMessage} from "../libraries/BridgeMessage.sol"; import {Constants} from "../libraries/Constants.sol"; import {TokenId} from "../libraries/TokenId.sol"; import {IXReceiver} from "../interfaces/IXReceiver.sol"; import {IAavePool} from "../interfaces/IAavePool.sol"; import {IBridgeToken} from "../interfaces/IBridgeToken.sol"; /** * @notice Defines the fields needed for an asset transfer * @param asset - The address of the asset * @param amount - The amount of the asset */ struct AssetTransfer { address asset; uint256 amount; } contract BridgeFacet is BaseConnextFacet { // ============ Libraries ============ using TypedMemView for bytes; using TypedMemView for bytes29; using BridgeMessage for bytes29; using SafeERC20 for IERC20Metadata; // ========== Custom Errors =========== error BridgeFacet__addRemote_invalidRouter(); error BridgeFacet__addRemote_invalidDomain(); error BridgeFacet__onlyDelegate_notDelegate(); error BridgeFacet__addSequencer_invalidSequencer(); error BridgeFacet__addSequencer_alreadyApproved(); error BridgeFacet__removeSequencer_notApproved(); error BridgeFacet__setXAppConnectionManager_domainsDontMatch(); error BridgeFacet__xcall_nativeAssetNotSupported(); error BridgeFacet__xcall_emptyTo(); error BridgeFacet__xcall_invalidSlippage(); error BridgeFacet_xcall__emptyLocalAsset(); error BridgeFacet__xcall_capReached(); error BridgeFacet__execute_unapprovedSender(); error BridgeFacet__execute_wrongDomain(); error BridgeFacet__execute_notSupportedSequencer(); error BridgeFacet__execute_invalidSequencerSignature(); error BridgeFacet__execute_maxRoutersExceeded(); error BridgeFacet__execute_notSupportedRouter(); error BridgeFacet__execute_invalidRouterSignature(); error BridgeFacet__execute_notApprovedForPortals(); error BridgeFacet__execute_badFastLiquidityStatus(); error BridgeFacet__execute_notReconciled(); error BridgeFacet__execute_externalCallFailed(); error BridgeFacet__excecute_insufficientGas(); error BridgeFacet__executePortalTransfer_insufficientAmountWithdrawn(); error BridgeFacet__bumpTransfer_valueIsZero(); error BridgeFacet__bumpTransfer_noRelayerVault(); error BridgeFacet__forceUpdateSlippage_invalidSlippage(); error BridgeFacet__forceUpdateSlippage_notDestination(); error BridgeFacet__forceReceiveLocal_notDestination(); error BridgeFacet__mustHaveRemote_destinationNotSupported(); // ============ Properties ============ // ============ Events ============ /** * @notice Emitted when `xcall` is called on the origin domain of a transfer. * @param transferId - The unique identifier of the crosschain transfer. * @param nonce - The bridge nonce of the transfer on the origin domain. * @param messageHash - The hash of the message bytes (containing all transfer info) that were bridged. * @param params - The `TransferInfo` provided to the function. * @param asset - The asset sent in with xcall * @param amount - The amount sent in with xcall * @param local - The local asset that is controlled by the bridge and can be burned/minted */ event XCalled( bytes32 indexed transferId, uint256 indexed nonce, bytes32 indexed messageHash, TransferInfo params, address asset, uint256 amount, address local, bytes messageBody ); /** * @notice Emitted when a transfer has its external data executed * @param transferId - The unique identifier of the crosschain transfer. * @param success - Whether calldata succeeded * @param returnData - Return bytes from the IXReceiver */ event ExternalCalldataExecuted(bytes32 indexed transferId, bool success, bytes returnData); /** * @notice Emitted when `execute` is called on the destination domain of a transfer. * @dev `execute` may be called when providing fast liquidity or when processing a reconciled (slow) transfer. * @param transferId - The unique identifier of the crosschain transfer. * @param to - The recipient `TransferInfo.to` provided, created as indexed parameter. * @param asset - The asset the recipient is given or the external call is executed with. Should be the * adopted asset on that chain. * @param args - The `ExecuteArgs` provided to the function. * @param local - The local asset that was either supplied by the router for a fast-liquidity transfer or * minted by the bridge in a reconciled (slow) transfer. Could be the same as the adopted `asset` param. * @param amount - The amount of transferring asset the recipient address receives or the external call is * executed with. * @param caller - The account that called the function. */ event Executed( bytes32 indexed transferId, address indexed to, address indexed asset, ExecuteArgs args, address local, uint256 amount, address caller ); /** * @notice Emitted when `_bumpTransfer` is called by an user on the origin domain both in * `xcall` and `bumpTransfer` * @param transferId - The unique identifier of the crosschain transaction * @param increase - The additional amount fees increased by * @param asset - The asset the fee was increased with * @param caller - The account that called the function */ event TransferRelayerFeesIncreased(bytes32 indexed transferId, uint256 increase, address asset, address caller); /** * @notice Emitted when `forceUpdateSlippage` is called by user-delegated EOA * on the destination domain * @param transferId - The unique identifier of the crosschain transaction * @param slippage - The updated slippage boundary */ event SlippageUpdated(bytes32 indexed transferId, uint256 slippage); /** * @notice Emitted when `forceReceiveLocal` is called by a user-delegated EOA * on the destination domain * @param transferId - The unique identifier of the crosschain transaction */ event ForceReceiveLocal(bytes32 indexed transferId); /** * @notice Emitted when a router used Aave Portal liquidity for fast transfer * @param transferId - The unique identifier of the crosschain transaction * @param router - The authorized router that used Aave Portal liquidity * @param asset - The asset that was provided by Aave Portal * @param amount - The amount of asset that was provided by Aave Portal */ event AavePortalMintUnbacked(bytes32 indexed transferId, address indexed router, address asset, uint256 amount); /** * @notice Emitted when a new remote instance is added * @param domain - The domain the remote instance is on * @param remote - The address of the remote instance * @param caller - The account that called the function */ event RemoteAdded(uint32 domain, address remote, address caller); /** * @notice Emitted when a sequencer is added or removed from allowlists * @param sequencer - The sequencer address to be added or removed * @param caller - The account that called the function */ event SequencerAdded(address sequencer, address caller); /** * @notice Emitted when a sequencer is added or removed from allowlists * @param sequencer - The sequencer address to be added or removed * @param caller - The account that called the function */ event SequencerRemoved(address sequencer, address caller); /** * @notice Emitted `xAppConnectionManager` is updated * @param updated - The updated address * @param caller - The account that called the function */ event XAppConnectionManagerSet(address updated, address caller); // ============ Modifiers ============ /** * @notice Only accept a transfer's designated delegate. * @param _params The TransferInfo of the transfer. */ modifier onlyDelegate(TransferInfo calldata _params) { if (_params.delegate != msg.sender) revert BridgeFacet__onlyDelegate_notDelegate(); _; } // ============ Getters ============ function routedTransfers(bytes32 _transferId) public view returns (address[] memory) { return s.routedTransfers[_transferId]; } function transferStatus(bytes32 _transferId) public view returns (DestinationTransferStatus) { return s.transferStatus[_transferId]; } function remote(uint32 _domain) public view returns (address) { return TypeCasts.bytes32ToAddress(s.remotes[_domain]); } function domain() public view returns (uint32) { return s.domain; } function nonce() public view returns (uint256) { return s.nonce; } function approvedSequencers(address _sequencer) external view returns (bool) { return s.approvedSequencers[_sequencer]; } function xAppConnectionManager() public view returns (address) { return address(s.xAppConnectionManager); } // ============ Admin Functions ============== /** * @notice Used to add an approved sequencer to the allowlist. * @param _sequencer - The sequencer address to add. */ function addSequencer(address _sequencer) external onlyOwnerOrAdmin { if (_sequencer == address(0)) revert BridgeFacet__addSequencer_invalidSequencer(); if (s.approvedSequencers[_sequencer]) revert BridgeFacet__addSequencer_alreadyApproved(); s.approvedSequencers[_sequencer] = true; emit SequencerAdded(_sequencer, msg.sender); } /** * @notice Used to remove an approved sequencer from the allowlist. * @param _sequencer - The sequencer address to remove. */ function removeSequencer(address _sequencer) external onlyOwnerOrAdmin { if (!s.approvedSequencers[_sequencer]) revert BridgeFacet__removeSequencer_notApproved(); delete s.approvedSequencers[_sequencer]; emit SequencerRemoved(_sequencer, msg.sender); } /** * @notice Modify the contract the xApp uses to validate Replica contracts * @param _xAppConnectionManager The address of the xAppConnectionManager contract */ function setXAppConnectionManager(address _xAppConnectionManager) external onlyOwnerOrAdmin { IConnectorManager manager = IConnectorManager(_xAppConnectionManager); if (manager.localDomain() != s.domain) { revert BridgeFacet__setXAppConnectionManager_domainsDontMatch(); } emit XAppConnectionManagerSet(_xAppConnectionManager, msg.sender); s.xAppConnectionManager = manager; } /** * @notice Register the address of a Router contract for the same xApp on a remote chain * @param _domain The domain of the remote xApp Router * @param _router The address of the remote xApp Router */ function enrollRemoteRouter(uint32 _domain, bytes32 _router) external onlyOwnerOrAdmin { if (_router == bytes32("")) revert BridgeFacet__addRemote_invalidRouter(); // Make sure we aren't setting the current domain (or an empty one) as the connextion. if (_domain == 0 || _domain == s.domain) { revert BridgeFacet__addRemote_invalidDomain(); } s.remotes[_domain] = _router; emit RemoteAdded(_domain, TypeCasts.bytes32ToAddress(_router), msg.sender); } // ============ Public Functions: Bridge ============== function xcall( uint32 _destination, address _to, address _asset, address _delegate, uint256 _amount, uint256 _slippage, bytes calldata _callData ) external payable nonXCallReentrant returns (bytes32) { // NOTE: Here, we fill in as much information as we can for the TransferInfo. // Some info is left blank and will be assigned in the internal `_xcall` function (e.g. // `normalizedIn`, `bridgedAmt`, canonical info, etc). TransferInfo memory params = TransferInfo({ to: _to, callData: _callData, originDomain: s.domain, destinationDomain: _destination, delegate: _delegate, // `receiveLocal: false` indicates we should always deliver the adopted asset on the // destination chain, swapping from the local asset if needed. receiveLocal: false, slippage: _slippage, originSender: msg.sender, // The following values should be assigned in _xcall. nonce: 0, canonicalDomain: 0, bridgedAmt: 0, normalizedIn: 0, canonicalId: bytes32(0) }); return _xcall(params, AssetTransfer(_asset, _amount), AssetTransfer(address(0), msg.value)); } function xcallIntoLocal( uint32 _destination, address _to, address _asset, address _delegate, uint256 _amount, uint256 _slippage, bytes calldata _callData ) external payable nonXCallReentrant returns (bytes32) { // NOTE: Here, we fill in as much information as we can for the TransferInfo. // Some info is left blank and will be assigned in the internal `_xcall` function (e.g. // `normalizedIn`, `bridgedAmt`, canonical info, etc). TransferInfo memory params = TransferInfo({ to: _to, callData: _callData, originDomain: s.domain, destinationDomain: _destination, delegate: _delegate, // `receiveLocal: true` indicates we should always deliver the local asset on the // destination chain, and NOT swap into any adopted assets. receiveLocal: true, slippage: _slippage, originSender: msg.sender, // The following values should be assigned in _xcall. nonce: 0, canonicalDomain: 0, bridgedAmt: 0, normalizedIn: 0, canonicalId: bytes32(0) }); return _xcall(params, AssetTransfer(_asset, _amount), AssetTransfer(address(0), msg.value)); } function xcall( uint32 _destination, address _to, address _asset, address _delegate, uint256 _amount, uint256 _slippage, bytes calldata _callData, uint256 _relayerFee ) external nonXCallReentrant returns (bytes32) { // NOTE: Here, we fill in as much information as we can for the TransferInfo. // Some info is left blank and will be assigned in the internal `_xcall` function (e.g. // `normalizedIn`, `bridgedAmt`, canonical info, etc). TransferInfo memory params = TransferInfo({ to: _to, callData: _callData, originDomain: s.domain, destinationDomain: _destination, delegate: _delegate, // `receiveLocal: false` indicates we should always deliver the adopted asset on the // destination chain, swapping from the local asset if needed. receiveLocal: false, slippage: _slippage, originSender: msg.sender, // The following values should be assigned in _xcall. nonce: 0, canonicalDomain: 0, bridgedAmt: 0, normalizedIn: 0, canonicalId: bytes32(0) }); return _xcall(params, AssetTransfer(_asset, _amount), AssetTransfer(_asset, _relayerFee)); } function xcallIntoLocal( uint32 _destination, address _to, address _asset, address _delegate, uint256 _amount, uint256 _slippage, bytes calldata _callData, uint256 _relayerFee ) external nonXCallReentrant returns (bytes32) { // NOTE: Here, we fill in as much information as we can for the TransferInfo. // Some info is left blank and will be assigned in the internal `_xcall` function (e.g. // `normalizedIn`, `bridgedAmt`, canonical info, etc). TransferInfo memory params = TransferInfo({ to: _to, callData: _callData, originDomain: s.domain, destinationDomain: _destination, delegate: _delegate, // `receiveLocal: true` indicates we should always deliver the local asset on the // destination chain, and NOT swap into any adopted assets. receiveLocal: true, slippage: _slippage, originSender: msg.sender, // The following values should be assigned in _xcall. nonce: 0, canonicalDomain: 0, bridgedAmt: 0, normalizedIn: 0, canonicalId: bytes32(0) }); return _xcall(params, AssetTransfer(_asset, _amount), AssetTransfer(_asset, _relayerFee)); } /** * @notice Called on a destination domain to disburse correct assets to end recipient and execute any included * calldata. * * @dev Can be called before or after `handle` [reconcile] is called (regarding the same transfer), depending on * whether the fast liquidity route (i.e. funds provided by routers) is being used for this transfer. As a result, * executed calldata (including properties like `originSender`) may or may not be verified depending on whether the * reconcile has been completed (i.e. the optimistic confirmation period has elapsed). * * @param _args - ExecuteArgs arguments. * @return bytes32 - The transfer ID of the crosschain transfer. Should match the xcall's transfer ID in order for * reconciliation to occur. */ function execute(ExecuteArgs calldata _args) external nonReentrant whenNotPaused returns (bytes32) { (bytes32 transferId, DestinationTransferStatus status) = _executeSanityChecks(_args); DestinationTransferStatus updated = status == DestinationTransferStatus.Reconciled ? DestinationTransferStatus.Completed : DestinationTransferStatus.Executed; s.transferStatus[transferId] = updated; // Supply assets to target recipient. Use router liquidity when this is a fast transfer, or mint bridge tokens // when this is a slow transfer. // NOTE: Asset will be adopted unless specified to `receiveLocal` in params. (uint256 amountOut, address asset, address local) = _handleExecuteLiquidity( transferId, AssetLogic.calculateCanonicalHash(_args.params.canonicalId, _args.params.canonicalDomain), updated != DestinationTransferStatus.Completed, _args ); // Execute the transaction using the designated calldata. uint256 amount = _handleExecuteTransaction( _args, amountOut, asset, transferId, updated == DestinationTransferStatus.Completed ); // Emit event. emit Executed(transferId, _args.params.to, asset, _args, local, amount, msg.sender); return transferId; } /** * @notice Anyone can call this function on the origin domain to increase the relayer fee for a transfer. * @param _transferId - The unique identifier of the crosschain transaction */ function bumpTransfer(bytes32 _transferId) external payable nonReentrant whenNotPaused { if (msg.value == 0) revert BridgeFacet__bumpTransfer_valueIsZero(); _bumpTransfer(_transferId, address(0), msg.value); } /** * @notice Anyone can call this function on the origin domain t o increase the relayer fee for * a given transfer using a specific asset. * @param _transferId - The unique identifier of the crosschain transaction * @param _relayerFeeAsset - The asset you are bumping fee with * @param _relayerFee - The amount you want to bump transfer fee with */ function bumpTransfer( bytes32 _transferId, address _relayerFeeAsset, uint256 _relayerFee ) external nonReentrant whenNotPaused { if (_relayerFee == 0) revert BridgeFacet__bumpTransfer_valueIsZero(); // check that the asset is whitelisted (the following reverts if asset // is not approved) _getApprovedCanonicalId(_relayerFeeAsset); // handle transferring asset to the relayer fee vault _bumpTransfer(_transferId, _relayerFeeAsset, _relayerFee); } /** * @notice Allows a user-specified account to update the slippage they are willing * to take on destination transfers. * * @param _params TransferInfo associated with the transfer * @param _slippage The updated slippage */ function forceUpdateSlippage(TransferInfo calldata _params, uint256 _slippage) external onlyDelegate(_params) { // Sanity check slippage if (_slippage > Constants.BPS_FEE_DENOMINATOR) { revert BridgeFacet__forceUpdateSlippage_invalidSlippage(); } // Should only be called on destination domain if (_params.destinationDomain != s.domain) { revert BridgeFacet__forceUpdateSlippage_notDestination(); } // Get transferId bytes32 transferId = _calculateTransferId(_params); // Store overrides s.slippage[transferId] = _slippage; // Emit event emit SlippageUpdated(transferId, _slippage); } /** * @notice Allows a user-specified account to withdraw the local asset directly * @dev Calldata will still be executed with the local asset. `IXReceiver` contracts * should be able to handle local assets in event of failures. * @param _params TransferInfo associated with the transfer */ function forceReceiveLocal(TransferInfo calldata _params) external onlyDelegate(_params) { // Should only be called on destination domain if (_params.destinationDomain != s.domain) { revert BridgeFacet__forceReceiveLocal_notDestination(); } // Get transferId bytes32 transferId = _calculateTransferId(_params); // Store overrides s.receiveLocalOverride[transferId] = true; // Emit event emit ForceReceiveLocal(transferId); } // ============ Internal: Bridge ============ /** * @notice Initiates a cross-chain transfer of funds and/or calldata * * @dev For ERC20 transfers, this contract must have approval to transfer the input (transacting) assets. The adopted * assets will be swapped for their local asset counterparts (i.e. bridgeable tokens) via the configured AMM if * necessary. In the event that the adopted assets *are* local bridge assets, no swap is needed. The local tokens will * then be sent via the bridge router. If the local assets are representational for an asset on another chain, we will * burn the tokens here. If the local assets are canonical (meaning that the adopted<>local asset pairing is native * to this chain), we will custody the tokens here. * * @param _params - The TransferInfo arguments. * @return bytes32 - The transfer ID of the newly created crosschain transfer. */ function _xcall( TransferInfo memory _params, AssetTransfer memory _asset, AssetTransfer memory _relayer ) internal // address _asset, // uint256 _amount, // address _relayerFeeAsset, // uint256 _relayerFee whenNotPaused returns (bytes32) { // Sanity checks. bytes32 remoteInstance; { // Not native asset. // NOTE: We support using address(0) as an intuitive default if you are sending a 0-value // transfer. In that edge case, address(0) will not be registered as a supported asset, but should // pass the `isLocalOrigin` check if (_asset.asset == address(0) && _asset.amount != 0) { revert BridgeFacet__xcall_nativeAssetNotSupported(); } // Destination domain is supported. // NOTE: This check implicitly also checks that `_params.destinationDomain != s.domain`, because the index // `s.domain` of `s.remotes` should always be `bytes32(0)`. remoteInstance = _mustHaveRemote(_params.destinationDomain); // Recipient defined. if (_params.to == address(0)) { revert BridgeFacet__xcall_emptyTo(); } if (_params.slippage > Constants.BPS_FEE_DENOMINATOR) { revert BridgeFacet__xcall_invalidSlippage(); } } // NOTE: The local asset will stay address(0) if input asset is address(0) in the event of a // 0-value transfer. Otherwise, the local address will be retrieved below address local; bytes32 transferId; TokenId memory canonical; bool isCanonical; { // Check that the asset is supported -- can be either adopted or local. // NOTE: Above we check that you can only have `address(0)` as the input asset if this is a // 0-value transfer. Because 0-value transfers short-circuit all checks on mappings keyed on // hash(canonicalId, canonicalDomain), this is safe even when the address(0) asset is not // allowlisted. if (_asset.asset != address(0)) { // Retrieve the canonical token information. bytes32 key; (canonical, key) = _getApprovedCanonicalId(_asset.asset); // Get the token config. TokenConfig storage config = AssetLogic.getConfig(key); // Set boolean flag isCanonical = _params.originDomain == canonical.domain; // Get the local address local = isCanonical ? TypeCasts.bytes32ToAddress(canonical.id) : config.representation; if (local == address(0)) { revert BridgeFacet_xcall__emptyLocalAsset(); } { // Enforce liquidity caps. // NOTE: Safe to do this before the swap because canonical domains do // not hit the AMMs (local == canonical). uint256 cap = config.cap; if (isCanonical && cap > 0) { // NOTE: this method includes router liquidity as part of the caps, // not only the minted amount uint256 newCustodiedAmount = config.custodied + _asset.amount; if (newCustodiedAmount > cap) { revert BridgeFacet__xcall_capReached(); } s.tokenConfigs[key].custodied = newCustodiedAmount; } } // Update TransferInfo to reflect the canonical token information. _params.canonicalDomain = canonical.domain; _params.canonicalId = canonical.id; if (_asset.amount > 0) { // Transfer funds of input asset to the contract from the user. AssetLogic.handleIncomingAsset(_asset.asset, _asset.amount); // Swap to the local asset from adopted if applicable. _params.bridgedAmt = AssetLogic.swapToLocalAssetIfNeeded( key, _asset.asset, local, _asset.amount, _params.slippage ); // Get the normalized amount in (amount sent in by user in 18 decimals). // NOTE: when getting the decimals from `_asset`, you don't know if you are looking for // adopted or local assets _params.normalizedIn = AssetLogic.normalizeDecimals( _asset.asset == local ? config.representationDecimals : config.adoptedDecimals, Constants.DEFAULT_NORMALIZED_DECIMALS, _asset.amount ); } } // Calculate the transfer ID. _params.nonce = s.nonce++; transferId = _calculateTransferId(_params); } // Handle the relayer fee. // NOTE: This has to be done *after* transferring in + swapping assets because // the transfer id uses the amount that is bridged (i.e. amount in local asset). if (_relayer.amount > 0) { _bumpTransfer(transferId, _relayer.asset, _relayer.amount); } // Send the crosschain message. _sendMessageAndEmit( transferId, _params, _asset.asset, _asset.amount, remoteInstance, canonical, local, isCanonical ); return transferId; } /** * @notice An internal function to handle the bumping of transfers * @param _transferId - The unique identifier of the crosschain transaction * @param _relayerFeeAsset - The asset you are bumping fee with * @param _relayerFee - The amount you want to bump transfer fee with */ function _bumpTransfer(bytes32 _transferId, address _relayerFeeAsset, uint256 _relayerFee) internal { address relayerVault = s.relayerFeeVault; if (relayerVault == address(0)) revert BridgeFacet__bumpTransfer_noRelayerVault(); if (_relayerFeeAsset == address(0)) { Address.sendValue(payable(relayerVault), _relayerFee); } else { // Pull funds from user to this contract // NOTE: could transfer to `relayerFeeVault`, but that would be unintuitive for user // approvals AssetLogic.handleIncomingAsset(_relayerFeeAsset, _relayerFee); // Transfer asset to relayerVault. AssetLogic.handleOutgoingAsset(_relayerFeeAsset, relayerVault, _relayerFee); } emit TransferRelayerFeesIncreased(_transferId, _relayerFee, _relayerFeeAsset, msg.sender); } /** * @notice Holds the logic to recover the signer from an encoded payload. * @dev Will hash and convert to an eth signed message. * @param _signed The hash that was signed. * @param _sig The signature from which we will recover the signer. */ function _recoverSignature(bytes32 _signed, bytes calldata _sig) internal pure returns (address) { // Recover return ECDSA.recover(ECDSA.toEthSignedMessageHash(_signed), _sig); } /** * @notice Performs some sanity checks for `execute`. * @dev Need this to prevent stack too deep. * @param _args ExecuteArgs that were passed in to the `execute` call. */ function _executeSanityChecks(ExecuteArgs calldata _args) private view returns (bytes32, DestinationTransferStatus) { // If the sender is not approved relayer, revert if (!s.approvedRelayers[msg.sender] && msg.sender != _args.params.delegate) { revert BridgeFacet__execute_unapprovedSender(); } // If this is not the destination domain revert if (_args.params.destinationDomain != s.domain) { revert BridgeFacet__execute_wrongDomain(); } // Path length refers to the number of facilitating routers. A transfer is considered 'multipath' // if multiple routers provide liquidity (in even 'shares') for it. uint256 pathLength = _args.routers.length; // Derive transfer ID based on given arguments. bytes32 transferId = _calculateTransferId(_args.params); // Retrieve the reconciled record. DestinationTransferStatus status = s.transferStatus[transferId]; if (pathLength != 0) { // Make sure number of routers is below the configured maximum. if (pathLength > s.maxRoutersPerTransfer) revert BridgeFacet__execute_maxRoutersExceeded(); // Check to make sure the transfer has not been reconciled (no need for routers if the transfer is // already reconciled; i.e. if there are routers provided, the transfer must *not* be reconciled). if (status != DestinationTransferStatus.None) revert BridgeFacet__execute_badFastLiquidityStatus(); // NOTE: The sequencer address may be empty and no signature needs to be provided in the case of the // slow liquidity route (i.e. no routers involved). Additionally, the sequencer does not need to be the // msg.sender. // Check to make sure the sequencer address provided is approved if (!s.approvedSequencers[_args.sequencer]) { revert BridgeFacet__execute_notSupportedSequencer(); } // Check to make sure the sequencer provided did sign the transfer ID and router path provided. // NOTE: when caps are enforced, this signature also acts as protection from malicious routers looking // to block the network. routers could `execute` a fake transaction, and use up the rest of the `custodied` // bandwidth, causing future `execute`s to fail. this would also cause a break in the accounting, where the // `custodied` balance no longer tracks representation asset minting / burning if ( _args.sequencer != _recoverSignature(keccak256(abi.encode(transferId, _args.routers)), _args.sequencerSignature) ) { revert BridgeFacet__execute_invalidSequencerSignature(); } // Hash the payload for which each router should have produced a signature. // Each router should have signed the `transferId` (which implicitly signs call params, // amount, and tokenId) as well as the `pathLength`, or the number of routers with which // they are splitting liquidity provision. bytes32 routerHash = keccak256(abi.encode(transferId, pathLength)); for (uint256 i; i < pathLength; ) { // Make sure the router is approved, if applicable. // If router ownership is renounced (_RouterOwnershipRenounced() is true), then the router allowlist // no longer applies and we can skip this approval step. if (!_isRouterAllowlistRemoved() && !s.routerConfigs[_args.routers[i]].approved) { revert BridgeFacet__execute_notSupportedRouter(); } // Validate the signature. We'll recover the signer's address using the expected payload and basic ECDSA // signature scheme recovery. The address for each signature must match the router's address. if (_args.routers[i] != _recoverSignature(routerHash, _args.routerSignatures[i])) { revert BridgeFacet__execute_invalidRouterSignature(); } unchecked { ++i; } } } else { // If there are no routers for this transfer, this `execute` must be a slow liquidity route; in which // case, we must make sure the transfer's been reconciled. if (status != DestinationTransferStatus.Reconciled) revert BridgeFacet__execute_notReconciled(); } return (transferId, status); } /** * @notice Calculates fast transfer amount. * @param _amount Transfer amount * @param _numerator Numerator * @param _denominator Denominator */ function _muldiv(uint256 _amount, uint256 _numerator, uint256 _denominator) private pure returns (uint256) { return (_amount * _numerator) / _denominator; } /** * @notice Execute liquidity process used when calling `execute`. * @dev Will revert with underflow if any router in the path has insufficient liquidity to provide * for the transfer. * @dev Need this to prevent stack too deep. */ function _handleExecuteLiquidity( bytes32 _transferId, bytes32 _key, bool _isFast, ExecuteArgs calldata _args ) private returns (uint256, address, address) { // Save the addresses of all routers providing liquidity for this transfer. s.routedTransfers[_transferId] = _args.routers; // Get the local asset contract address (if applicable). address local; if (_args.params.canonicalDomain != 0) { local = _getLocalAsset(_key, _args.params.canonicalId, _args.params.canonicalDomain); } // If this is a zero-value transfer, short-circuit remaining logic. if (_args.params.bridgedAmt == 0) { return (0, local, local); } // Get the receive local status bool receiveLocal = _args.params.receiveLocal || s.receiveLocalOverride[_transferId]; uint256 toSwap = _args.params.bridgedAmt; // If this is a fast liquidity path, we should handle deducting from applicable routers' liquidity. // If this is a slow liquidity path, the transfer must have been reconciled (if we've reached this point), // and the funds would have been custodied in this contract. The exact custodied amount is untracked in state // (since the amount is hashed in the transfer ID itself) - thus, no updates are required. if (_isFast) { uint256 pathLen = _args.routers.length; // Calculate amount that routers will provide with the fast-liquidity fee deducted. toSwap = _muldiv(_args.params.bridgedAmt, s.LIQUIDITY_FEE_NUMERATOR, Constants.BPS_FEE_DENOMINATOR); if (pathLen == 1) { // If router does not have enough liquidity, try to use Aave Portals. // NOTE: Only one router should be responsible for taking on this credit risk, and it should only deal // with transfers expecting adopted assets (to avoid introducing runtime slippage). if (!receiveLocal && s.routerBalances[_args.routers[0]][local] < toSwap && s.aavePool != address(0)) { if (!s.routerConfigs[_args.routers[0]].portalApproved) revert BridgeFacet__execute_notApprovedForPortals(); // Portals deliver the adopted asset directly; return after portal execution is completed. (uint256 portalDeliveredAmount, address adoptedAsset) = _executePortalTransfer( _transferId, _key, toSwap, _args.routers[0] ); return (portalDeliveredAmount, adoptedAsset, local); } else { // Decrement the router's liquidity. s.routerBalances[_args.routers[0]][local] -= toSwap; } } else { // For each router, assert they are approved, and deduct liquidity. uint256 routerAmount = toSwap / pathLen; for (uint256 i; i < pathLen - 1; ) { // Decrement router's liquidity. // NOTE: If any router in the path has insufficient liquidity, this will revert with an underflow error. s.routerBalances[_args.routers[i]][local] -= routerAmount; unchecked { ++i; } } // The last router in the multipath will sweep the remaining balance to account for remainder dust. uint256 toSweep = routerAmount + (toSwap % pathLen); s.routerBalances[_args.routers[pathLen - 1]][local] -= toSweep; } } // If it is the canonical domain, decrease custodied value if (s.domain == _args.params.canonicalDomain && AssetLogic.getConfig(_key).cap > 0) { // NOTE: safe to use the amount here instead of post-swap because there are no // AMMs on the canonical domain (assuming canonical == adopted on canonical domain) s.tokenConfigs[_key].custodied -= toSwap; } // If the local asset is specified, or the adopted asset was overridden (e.g. when user facing slippage // conditions outside of their boundaries), exit without swapping. if (receiveLocal) { // Delete override delete s.receiveLocalOverride[_transferId]; return (toSwap, local, local); } // Swap out of representational asset into adopted asset if needed. uint256 slippageOverride = s.slippage[_transferId]; // delete for gas refund delete s.slippage[_transferId]; (uint256 amount, address adopted) = AssetLogic.swapFromLocalAssetIfNeeded( _key, local, toSwap, slippageOverride != 0 ? slippageOverride : _args.params.slippage, _args.params.normalizedIn ); return (amount, adopted, local); } /** * @notice Process the transfer, and calldata if needed, when calling `execute` * @dev Need this to prevent stack too deep */ function _handleExecuteTransaction( ExecuteArgs calldata _args, uint256 _amountOut, address _asset, // adopted (or local if specified) bytes32 _transferId, bool _reconciled ) private returns (uint256) { // transfer funds to recipient AssetLogic.handleOutgoingAsset(_asset, _args.params.to, _amountOut); // execute the calldata _executeCalldata(_transferId, _amountOut, _asset, _reconciled, _args.params); return _amountOut; } /** * @notice Executes external calldata. * * @dev Once a transfer is reconciled (i.e. data is authenticated), external calls will * fail gracefully. This means errors will be emitted in an event, but the function itself * will not revert. * In the case where a transaction is *not* reconciled (i.e. data is unauthenticated), this * external call will fail loudly. This allows all functions that rely on authenticated data * (using a specific check on the origin sender), to be forced into the slow path for * execution to succeed. * */ function _executeCalldata( bytes32 _transferId, uint256 _amount, address _asset, bool _reconciled, TransferInfo calldata _params ) internal { // execute the calldata if (keccak256(_params.callData) == Constants.EMPTY_HASH) { // no call data, return amount out return; } (bool success, bytes memory returnData) = ExcessivelySafeCall.excessivelySafeCall( _params.to, gasleft() - Constants.EXECUTE_CALLDATA_RESERVE_GAS, 0, // native asset value (always 0) Constants.DEFAULT_COPY_BYTES, // only copy 256 bytes back as calldata abi.encodeWithSelector( IXReceiver.xReceive.selector, _transferId, _amount, _asset, _reconciled ? _params.originSender : address(0), // use passed in value iff authenticated _params.originDomain, _params.callData ) ); if (!_reconciled && !success) { // See above devnote, reverts if unsuccessful on fast path revert BridgeFacet__execute_externalCallFailed(); } emit ExternalCalldataExecuted(_transferId, success, returnData); } /** * @notice Uses Aave Portals to provide fast liquidity */ function _executePortalTransfer( bytes32 _transferId, bytes32 _key, uint256 _fastTransferAmount, address _router ) internal returns (uint256, address) { // Calculate local to adopted swap output if needed address adopted = _getAdoptedAsset(_key); IAavePool(s.aavePool).mintUnbacked(adopted, _fastTransferAmount, address(this), Constants.AAVE_REFERRAL_CODE); // Improvement: Instead of withdrawing to address(this), withdraw directly to the user or executor to save 1 transfer uint256 amountWithdrawn = IAavePool(s.aavePool).withdraw(adopted, _fastTransferAmount, address(this)); if (amountWithdrawn < _fastTransferAmount) revert BridgeFacet__executePortalTransfer_insufficientAmountWithdrawn(); // Store principle debt s.portalDebt[_transferId] = _fastTransferAmount; // Store fee debt s.portalFeeDebt[_transferId] = (s.aavePortalFeeNumerator * _fastTransferAmount) / Constants.BPS_FEE_DENOMINATOR; emit AavePortalMintUnbacked(_transferId, _router, adopted, _fastTransferAmount); return (_fastTransferAmount, adopted); } // ============ Internal: Send & Emit Xcalled============ /** * @notice Format and send transfer message to a remote chain. * * @param _transferId Unique identifier for the transfer. * @param _params The TransferInfo. * @param _connextion The connext instance on the destination domain. * @param _canonical The canonical token ID/domain info. * @param _local The local token address. * @param _amount The token amount. * @param _isCanonical Whether or not the local token is the canonical asset (i.e. this is the token's * "home" chain). */ function _sendMessageAndEmit( bytes32 _transferId, TransferInfo memory _params, address _asset, uint256 _amount, bytes32 _connextion, TokenId memory _canonical, address _local, bool _isCanonical ) private { // Remove tokens from circulation on this chain if applicable. uint256 bridgedAmt = _params.bridgedAmt; if (bridgedAmt > 0) { if (!_isCanonical) { // If the token originates on a remote chain, burn the representational tokens on this chain. IBridgeToken(_local).burn(address(this), bridgedAmt); } // IFF the token IS the canonical token (i.e. originates on this chain), we lock the input tokens in escrow // in this contract, as an equal amount of representational assets will be minted on the destination chain. // NOTE: The tokens should be in the contract already at this point from xcall. } bytes memory _messageBody = abi.encodePacked( _canonical.domain, _canonical.id, BridgeMessage.Types.Transfer, bridgedAmt, _transferId ); // Send message to destination chain bridge router. // return message hash and unhashed body (bytes32 messageHash, bytes memory messageBody) = IOutbox(s.xAppConnectionManager.home()).dispatch( _params.destinationDomain, _connextion, _messageBody ); // emit event emit XCalled(_transferId, _params.nonce, messageHash, _params, _asset, _amount, _local, messageBody); } /** * @notice Assert that the given domain has a xApp Router registered and return its address * @param _domain The domain of the chain for which to get the xApp Router * @return _remote The address of the remote xApp Router on _domain */ function _mustHaveRemote(uint32 _domain) internal view returns (bytes32 _remote) { _remote = s.remotes[_domain]; if (_remote == bytes32(0)) { revert BridgeFacet__mustHaveRemote_destinationNotSupported(); } } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import {ERC20Upgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20BurnableUpgradeable.sol"; import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; /** * @title Liquidity Provider Token * @notice This token is an ERC20 detailed token with added capability to be minted by the owner. * It is used to represent user's shares when providing liquidity to swap contracts. * @dev Only Swap contracts should initialize and own LPToken contracts. */ contract LPToken is ERC20Upgradeable, OwnableUpgradeable { // ============ Storage ============ // ============ Initializer ============ /** * @notice Initializes this LPToken contract with the given name and symbol * @dev The caller of this function will become the owner. A Swap contract should call this * in its initializer function. * @param name name of this token * @param symbol symbol of this token */ function initialize(string memory name, string memory symbol) external initializer returns (bool) { __Context_init_unchained(); __ERC20_init_unchained(name, symbol); __Ownable_init_unchained(); return true; } // ============ External functions ============ /** * @notice Mints the given amount of LPToken to the recipient. * @dev only owner can call this mint function * @param recipient address of account to receive the tokens * @param amount amount of tokens to mint */ function mint(address recipient, uint256 amount) external onlyOwner { require(amount != 0, "LPToken: cannot mint 0"); _mint(recipient, amount); } /** * @notice Burns the given amount of LPToken from provided account * @dev only owner can call this burn function * @param account address of account from which to burn token * @param amount amount of tokens to mint */ function burnFrom(address account, uint256 amount) external onlyOwner { require(amount != 0, "LPToken: cannot burn 0"); _burn(account, amount); } // ============ Internal functions ============ /** * @dev Overrides ERC20._beforeTokenTransfer() which get called on every transfers including * minting and burning. This ensures that Swap.updateUserWithdrawFees are called everytime. * This assumes the owner is set to a Swap contract's address. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual override(ERC20Upgradeable) { super._beforeTokenTransfer(from, to, amount); require(to != address(this), "LPToken: cannot send to itself"); } // ============ Upgrade Gap ============ uint256[50] private __GAP; // gap for upgrade safety }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; interface IAavePool { /** * @dev Mints an `amount` of aTokens to the `onBehalfOf` * @param asset The address of the underlying asset to mint * @param amount The amount to mint * @param onBehalfOf The address that will receive the aTokens * @param referralCode Code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man **/ function mintUnbacked( address asset, uint256 amount, address onBehalfOf, uint16 referralCode ) external; /** * @dev Back the current unbacked underlying with `amount` and pay `fee`. * @param asset The address of the underlying asset to back * @param amount The amount to back * @param fee The amount paid in fees **/ function backUnbacked( address asset, uint256 amount, uint256 fee ) external; /** * @notice Withdraws an `amount` of underlying asset from the reserve, burning the equivalent aTokens owned * E.g. User has 100 aUSDC, calls withdraw() and receives 100 USDC, burning the 100 aUSDC * @param asset The address of the underlying asset to withdraw * @param amount The underlying amount to be withdrawn * - Send the value type(uint256).max in order to withdraw the whole aToken balance * @param to The address that will receive the underlying, same as msg.sender if the user * wants to receive it on his own wallet, or a different address if the beneficiary is a * different wallet * @return The final amount withdrawn **/ function withdraw( address asset, uint256 amount, address to ) external returns (uint256); }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; interface IBridgeToken is IERC20Metadata { function burn(address _from, uint256 _amnt) external; function mint(address _to, uint256 _amnt) external; function setDetails(string calldata _name, string calldata _symbol) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; /******************************************************************************\ * Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) * EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 /******************************************************************************/ interface IDiamondCut { enum FacetCutAction { Add, Replace, Remove } // Add=0, Replace=1, Remove=2 struct FacetCut { address facetAddress; FacetCutAction action; bytes4[] functionSelectors; } /// @notice Propose to add/replace/remove any number of functions and optionally execute /// a function with delegatecall /// @param _diamondCut Contains the facet addresses and function selectors /// @param _init The address of the contract or facet to execute _calldata /// @param _calldata A function call, including function selector and arguments /// _calldata is executed with delegatecall on _init function proposeDiamondCut( FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata ) external; event DiamondCutProposed(FacetCut[] _diamondCut, address _init, bytes _calldata, uint256 deadline); /// @notice Add/replace/remove any number of functions and optionally execute /// a function with delegatecall /// @param _diamondCut Contains the facet addresses and function selectors /// @param _init The address of the contract or facet to execute _calldata /// @param _calldata A function call, including function selector and arguments /// _calldata is executed with delegatecall on _init function diamondCut( FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata ) external; event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata); /// @notice Propose to add/replace/remove any number of functions and optionally execute /// a function with delegatecall /// @param _diamondCut Contains the facet addresses and function selectors /// @param _init The address of the contract or facet to execute _calldata /// @param _calldata A function call, including function selector and arguments /// _calldata is executed with delegatecall on _init function rescindDiamondCut( FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata ) external; /** * @notice Returns the acceptance time for a given proposal * @param _diamondCut Contains the facet addresses and function selectors * @param _init The address of the contract or facet to execute _calldata * @param _calldata A function call, including function selector and arguments _calldata is * executed with delegatecall on _init */ function getAcceptanceTime( FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata ) external returns (uint256); event DiamondCutRescinded(FacetCut[] _diamondCut, address _init, bytes _calldata); }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface IStableSwap { /*** EVENTS ***/ // events replicated from SwapUtils to make the ABI easier for dumb // clients event TokenSwap(address indexed buyer, uint256 tokensSold, uint256 tokensBought, uint128 soldId, uint128 boughtId); event AddLiquidity( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event RemoveLiquidity(address indexed provider, uint256[] tokenAmounts, uint256 lpTokenSupply); event RemoveLiquidityOne( address indexed provider, uint256 lpTokenAmount, uint256 lpTokenSupply, uint256 boughtId, uint256 tokensBought ); event RemoveLiquidityImbalance( address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event NewAdminFee(uint256 newAdminFee); event NewSwapFee(uint256 newSwapFee); event NewWithdrawFee(uint256 newWithdrawFee); event RampA(uint256 oldA, uint256 newA, uint256 initialTime, uint256 futureTime); event StopRampA(uint256 currentA, uint256 time); function swap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy, uint256 deadline ) external returns (uint256); function swapExact( uint256 amountIn, address assetIn, address assetOut, uint256 minAmountOut, uint256 deadline ) external payable returns (uint256); function swapExactOut( uint256 amountOut, address assetIn, address assetOut, uint256 maxAmountIn, uint256 deadline ) external payable returns (uint256); function getA() external view returns (uint256); function getToken(uint8 index) external view returns (IERC20); function getTokenIndex(address tokenAddress) external view returns (uint8); function getTokenBalance(uint8 index) external view returns (uint256); function getVirtualPrice() external view returns (uint256); // min return calculation functions function calculateSwap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256); function calculateSwapOut( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dy ) external view returns (uint256); function calculateSwapFromAddress( address assetIn, address assetOut, uint256 amountIn ) external view returns (uint256); function calculateSwapOutFromAddress( address assetIn, address assetOut, uint256 amountOut ) external view returns (uint256); function calculateTokenAmount(uint256[] calldata amounts, bool deposit) external view returns (uint256); function calculateRemoveLiquidity(uint256 amount) external view returns (uint256[] memory); function calculateRemoveLiquidityOneToken(uint256 tokenAmount, uint8 tokenIndex) external view returns (uint256 availableTokenAmount); // state modifying functions function initialize( IERC20[] memory pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 a, uint256 fee, uint256 adminFee, address lpTokenTargetAddress ) external; function addLiquidity( uint256[] calldata amounts, uint256 minToMint, uint256 deadline ) external returns (uint256); function removeLiquidity( uint256 amount, uint256[] calldata minAmounts, uint256 deadline ) external returns (uint256[] memory); function removeLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount, uint256 deadline ) external returns (uint256); function removeLiquidityImbalance( uint256[] calldata amounts, uint256 maxBurnAmount, uint256 deadline ) external returns (uint256); }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; interface IXReceiver { function xReceive( bytes32 _transferId, uint256 _amount, address _asset, address _originSender, uint32 _origin, bytes memory _callData ) external returns (bytes memory); }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import {SwapUtils} from "./SwapUtils.sol"; import {Constants} from "./Constants.sol"; /** * @title AmplificationUtils library * @notice A library to calculate and ramp the A parameter of a given `SwapUtils.Swap` struct. * This library assumes the struct is fully validated. */ library AmplificationUtils { event RampA(uint256 oldA, uint256 newA, uint256 initialTime, uint256 futureTime); event StopRampA(uint256 currentA, uint256 time); /** * @notice Return A, the amplification coefficient * n ** (n - 1) * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return A parameter */ function getA(SwapUtils.Swap storage self) internal view returns (uint256) { return _getAPrecise(self) / Constants.A_PRECISION; } /** * @notice Return A in its raw precision * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return A parameter in its raw precision form */ function getAPrecise(SwapUtils.Swap storage self) internal view returns (uint256) { return _getAPrecise(self); } /** * @notice Return A in its raw precision * @dev See the StableSwap paper for details * @param self Swap struct to read from * @return currentA A parameter in its raw precision form */ function _getAPrecise(SwapUtils.Swap storage self) internal view returns (uint256 currentA) { uint256 t1 = self.futureATime; // time when ramp is finished currentA = self.futureA; // final A value when ramp is finished uint256 a0 = self.initialA; // initial A value when ramp is started if (a0 != currentA && block.timestamp < t1) { uint256 t0 = self.initialATime; // time when ramp is started assembly { currentA := div(add(mul(a0, sub(t1, timestamp())), mul(currentA, sub(timestamp(), t0))), sub(t1, t0)) } } } /** * @notice Start ramping up or down A parameter towards given futureA_ and futureTime_ * Checks if the change is too rapid, and commits the new A value only when it falls under * the limit range. * @param self Swap struct to update * @param futureA_ the new A to ramp towards * @param futureTime_ timestamp when the new A should be reached */ function rampA( SwapUtils.Swap storage self, uint256 futureA_, uint256 futureTime_ ) internal { require(block.timestamp >= self.initialATime + Constants.MIN_RAMP_DELAY, "Wait 1 day before starting ramp"); require(futureTime_ >= block.timestamp + Constants.MIN_RAMP_TIME, "Insufficient ramp time"); require(futureA_ != 0 && futureA_ < Constants.MAX_A, "futureA_ must be > 0 and < MAX_A"); uint256 initialAPrecise = _getAPrecise(self); uint256 futureAPrecise = futureA_ * Constants.A_PRECISION; require(initialAPrecise != futureAPrecise, "!valid ramp"); if (futureAPrecise < initialAPrecise) { require(futureAPrecise * Constants.MAX_A_CHANGE >= initialAPrecise, "futureA_ is too small"); } else { require(futureAPrecise <= initialAPrecise * Constants.MAX_A_CHANGE, "futureA_ is too large"); } self.initialA = initialAPrecise; self.futureA = futureAPrecise; self.initialATime = block.timestamp; self.futureATime = futureTime_; emit RampA(initialAPrecise, futureAPrecise, block.timestamp, futureTime_); } /** * @notice Stops ramping A immediately. Once this function is called, rampA() * cannot be called for another 24 hours * @param self Swap struct to update */ function stopRampA(SwapUtils.Swap storage self) internal { require(self.futureATime > block.timestamp, "Ramp is already stopped"); uint256 currentA = _getAPrecise(self); self.initialA = currentA; self.futureA = currentA; self.initialATime = block.timestamp; self.futureATime = block.timestamp; emit StopRampA(currentA, block.timestamp); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {TypeCasts} from "../../../shared/libraries/TypeCasts.sol"; import {IStableSwap} from "../interfaces/IStableSwap.sol"; import {LibConnextStorage, AppStorage, TokenConfig} from "./LibConnextStorage.sol"; import {SwapUtils} from "./SwapUtils.sol"; import {Constants} from "./Constants.sol"; import {TokenId} from "./TokenId.sol"; library AssetLogic { // ============ Libraries ============ using SwapUtils for SwapUtils.Swap; using SafeERC20 for IERC20Metadata; // ============ Errors ============ error AssetLogic__handleIncomingAsset_nativeAssetNotSupported(); error AssetLogic__handleIncomingAsset_feeOnTransferNotSupported(); error AssetLogic__handleOutgoingAsset_notNative(); error AssetLogic__getTokenIndexFromStableSwapPool_notExist(); error AssetLogic__getConfig_notRegistered(); error AssetLogic__swapAsset_externalStableSwapPoolDoesNotExist(); // ============ Internal: Handle Transfer ============ function getConfig(bytes32 _key) internal view returns (TokenConfig storage) { AppStorage storage s = LibConnextStorage.connextStorage(); TokenConfig storage config = s.tokenConfigs[_key]; // Sanity check: not empty // NOTE: adopted decimals will *always* be nonzero (or reflect what is onchain // for the asset). The same is not true for the representation assets, which // will always have 0 decimals on the canonical domain if (config.adoptedDecimals < 1) { revert AssetLogic__getConfig_notRegistered(); } return config; } /** * @notice Handles transferring funds from msg.sender to the Connext contract. * @dev Does NOT work with fee-on-transfer tokens: will revert. * * @param _asset - The address of the ERC20 token to transfer. * @param _amount - The specified amount to transfer. */ function handleIncomingAsset(address _asset, uint256 _amount) internal { // Sanity check: if amount is 0, do nothing. if (_amount == 0) { return; } // Sanity check: asset address is not zero. if (_asset == address(0)) { revert AssetLogic__handleIncomingAsset_nativeAssetNotSupported(); } IERC20Metadata asset = IERC20Metadata(_asset); // Record starting amount to validate correct amount is transferred. uint256 starting = asset.balanceOf(address(this)); // Transfer asset to contract. asset.safeTransferFrom(msg.sender, address(this), _amount); // Ensure correct amount was transferred (i.e. this was not a fee-on-transfer token). if (asset.balanceOf(address(this)) - starting != _amount) { revert AssetLogic__handleIncomingAsset_feeOnTransferNotSupported(); } } /** * @notice Handles transferring funds from the Connext contract to a specified address * @param _asset - The address of the ERC20 token to transfer. * @param _to - The recipient address that will receive the funds. * @param _amount - The amount to withdraw from contract. */ function handleOutgoingAsset( address _asset, address _to, uint256 _amount ) internal { // Sanity check: if amount is 0, do nothing. if (_amount == 0) { return; } // Sanity check: asset address is not zero. if (_asset == address(0)) revert AssetLogic__handleOutgoingAsset_notNative(); // Transfer ERC20 asset to target recipient. SafeERC20.safeTransfer(IERC20Metadata(_asset), _to, _amount); } // ============ Internal: StableSwap Pools ============ /** * @notice Return the index of the given token address. Reverts if no matching * token is found. * @param key the hash of the canonical id and domain * @param tokenAddress address of the token * @return the index of the given token address */ function getTokenIndexFromStableSwapPool(bytes32 key, address tokenAddress) internal view returns (uint8) { AppStorage storage s = LibConnextStorage.connextStorage(); uint8 index = s.tokenIndexes[key][tokenAddress]; if (address(s.swapStorages[key].pooledTokens[index]) != tokenAddress) revert AssetLogic__getTokenIndexFromStableSwapPool_notExist(); return index; } // ============ Internal: Handle Swap ============ /** * @notice Swaps an adopted asset to the local (representation or canonical) asset. * @dev Will not swap if the asset passed in is the local asset. * @param _key - The hash of canonical id and domain. * @param _asset - The address of the adopted asset to swap into the local asset. * @param _amount - The amount of the adopted asset to swap. * @param _slippage - The maximum amount of slippage user will take on from _amount in BPS. * @return uint256 The amount of local asset received from swap. */ function swapToLocalAssetIfNeeded( bytes32 _key, address _asset, address _local, uint256 _amount, uint256 _slippage ) internal returns (uint256) { // If there's no amount, no need to swap. if (_amount == 0) { return 0; } // Check the case where the adopted asset *is* the local asset. If so, no need to swap. if (_local == _asset) { return _amount; } // Get the configs. TokenConfig storage config = getConfig(_key); // Swap the asset to the proper local asset. (uint256 out, ) = _swapAsset( _key, _asset, _local, _amount, calculateSlippageBoundary(config.adoptedDecimals, config.representationDecimals, _amount, _slippage) ); return out; } /** * @notice Swaps a local bridge asset for the adopted asset using the stored stable swap * @dev Will not swap if the asset passed in is the adopted asset * @param _key the hash of the canonical id and domain * @param _asset - The address of the local asset to swap into the adopted asset * @param _amount - The amount of the local asset to swap * @param _slippage - The minimum amount of slippage user will take on from _amount in BPS * @param _normalizedIn - The amount sent in on xcall to take the slippage from, in 18 decimals * by convention * @return The amount of adopted asset received from swap * @return The address of asset received post-swap */ function swapFromLocalAssetIfNeeded( bytes32 _key, address _asset, uint256 _amount, uint256 _slippage, uint256 _normalizedIn ) internal returns (uint256, address) { // Get the token config. TokenConfig storage config = getConfig(_key); address adopted = config.adopted; // If the adopted asset is the local asset, no need to swap. if (adopted == _asset) { return (_amount, adopted); } // If there's no amount, no need to swap. if (_amount == 0) { return (_amount, adopted); } // Swap the asset to the proper local asset return _swapAsset( _key, _asset, adopted, _amount, // NOTE: To get the slippage boundary here, you must take the slippage % off of the // normalized amount in (at 18 decimals by convention), then convert that amount // to the proper decimals of adopted. calculateSlippageBoundary( Constants.DEFAULT_NORMALIZED_DECIMALS, config.adoptedDecimals, _normalizedIn, _slippage ) ); } /** * @notice Swaps a local bridge asset for the adopted asset using the stored stable swap * @dev Will not swap if the asset passed in is the adopted asset * @param _key the hash of the canonical id and domain * @param _asset - The address of the local asset to swap into the adopted asset * @param _amount - The exact amount to receive out of the swap * @param _maxIn - The most you will supply to the swap * @return The amount of local asset put into swap * @return The address of asset received post-swap */ function swapFromLocalAssetIfNeededForExactOut( bytes32 _key, address _asset, uint256 _amount, uint256 _maxIn ) internal returns (uint256, address) { TokenConfig storage config = getConfig(_key); // If the adopted asset is the local asset, no need to swap. address adopted = config.adopted; if (adopted == _asset) { return (_amount, adopted); } return _swapAssetOut(_key, _asset, adopted, _amount, _maxIn); } /** * @notice Swaps assetIn to assetOut using the stored stable swap or internal swap pool. * @dev Will not swap if the asset passed in is the adopted asset * @param _key - The hash of canonical id and domain. * @param _assetIn - The address of the from asset * @param _assetOut - The address of the to asset * @param _amount - The amount of the local asset to swap * @param _minOut - The minimum amount of `_assetOut` the user will accept * @return The amount of asset received * @return The address of asset received */ function _swapAsset( bytes32 _key, address _assetIn, address _assetOut, uint256 _amount, uint256 _minOut ) internal returns (uint256, address) { AppStorage storage s = LibConnextStorage.connextStorage(); // Retrieve internal swap pool reference. SwapUtils.Swap storage ipool = s.swapStorages[_key]; if (ipool.exists()) { // Swap via the internal pool. return ( ipool.swapInternal( getTokenIndexFromStableSwapPool(_key, _assetIn), getTokenIndexFromStableSwapPool(_key, _assetOut), _amount, _minOut ), _assetOut ); } else { // Otherwise, swap via external stableswap pool. IStableSwap pool = IStableSwap(getConfig(_key).adoptedToLocalExternalPools); IERC20Metadata assetIn = IERC20Metadata(_assetIn); assetIn.safeApprove(address(pool), 0); assetIn.safeIncreaseAllowance(address(pool), _amount); // NOTE: If pool is not registered here, then this call will revert. return ( pool.swapExact(_amount, _assetIn, _assetOut, _minOut, block.timestamp + Constants.DEFAULT_DEADLINE_EXTENSION), _assetOut ); } } /** * @notice Swaps assetIn to assetOut using the stored stable swap or internal swap pool. * @param _key - The hash of the canonical id and domain. * @param _assetIn - The address of the from asset. * @param _assetOut - The address of the to asset. * @param _amountOut - The amount of the _assetOut to swap. * @param _maxIn - The most you will supply to the swap. * @return amountIn The amount of assetIn. Will be 0 if the swap was unsuccessful (slippage * too high). * @return assetOut The address of asset received. */ function _swapAssetOut( bytes32 _key, address _assetIn, address _assetOut, uint256 _amountOut, uint256 _maxIn ) internal returns (uint256, address) { AppStorage storage s = LibConnextStorage.connextStorage(); // Retrieve internal swap pool reference. If it doesn't exist, we'll resort to using an // external stableswap below. SwapUtils.Swap storage ipool = s.swapStorages[_key]; // Swap the asset to the proper local asset. // NOTE: IFF slippage was too high to perform swap in either case: success = false, amountIn = 0 if (ipool.exists()) { // Swap via the internal pool. return ( ipool.swapInternalOut( getTokenIndexFromStableSwapPool(_key, _assetIn), getTokenIndexFromStableSwapPool(_key, _assetOut), _amountOut, _maxIn ), _assetOut ); } else { // Otherwise, swap via external stableswap pool. // NOTE: This call will revert if the external stableswap pool doesn't exist. IStableSwap pool = IStableSwap(getConfig(_key).adoptedToLocalExternalPools); address poolAddress = address(pool); // Perform the swap. // Edge case with some tokens: Example USDT in ETH Mainnet, after the backUnbacked call // there could be a remaining allowance if not the whole amount is pulled by aave. // Later, if we try to increase the allowance it will fail. USDT demands if allowance // is not 0, it has to be set to 0 first. // Example: https://github.com/aave/aave-v3-periphery/blob/ca184e5278bcbc10d28c3dbbc604041d7cfac50b/contracts/adapters/paraswap/ParaSwapRepayAdapter.sol#L138-L140 IERC20Metadata assetIn = IERC20Metadata(_assetIn); assetIn.safeApprove(poolAddress, 0); assetIn.safeIncreaseAllowance(poolAddress, _maxIn); uint256 out = pool.swapExactOut( _amountOut, _assetIn, _assetOut, _maxIn, block.timestamp + Constants.DEFAULT_DEADLINE_EXTENSION ); // Reset allowance assetIn.safeApprove(poolAddress, 0); return (out, _assetOut); } } /** * @notice Calculate amount of tokens you receive on a local bridge asset for the adopted asset * using the stored stable swap * @dev Will not use the stored stable swap if the asset passed in is the local asset * @param _key - The hash of the canonical id and domain * @param _asset - The address of the local asset to swap into the local asset * @param _amount - The amount of the local asset to swap * @return The amount of local asset received from swap * @return The address of asset received post-swap */ function calculateSwapFromLocalAssetIfNeeded( bytes32 _key, address _asset, uint256 _amount ) internal view returns (uint256, address) { AppStorage storage s = LibConnextStorage.connextStorage(); // If the adopted asset is the local asset, no need to swap. TokenConfig storage config = getConfig(_key); address adopted = config.adopted; if (adopted == _asset) { return (_amount, adopted); } SwapUtils.Swap storage ipool = s.swapStorages[_key]; // Calculate the swap using the appropriate pool. if (ipool.exists()) { // Calculate with internal swap pool. uint8 tokenIndexIn = getTokenIndexFromStableSwapPool(_key, _asset); uint8 tokenIndexOut = getTokenIndexFromStableSwapPool(_key, adopted); return (ipool.calculateSwap(tokenIndexIn, tokenIndexOut, _amount), adopted); } else { // Otherwise, try to calculate with external pool. IStableSwap pool = IStableSwap(config.adoptedToLocalExternalPools); // NOTE: This call will revert if no external pool exists. return (pool.calculateSwapFromAddress(_asset, adopted, _amount), adopted); } } /** * @notice Calculate amount of tokens you receive of a local bridge asset for the adopted asset * using the stored stable swap * @dev Will not use the stored stable swap if the asset passed in is the local asset * @param _asset - The address of the asset to swap into the local asset * @param _amount - The amount of the asset to swap * @return The amount of local asset received from swap * @return The address of asset received post-swap */ function calculateSwapToLocalAssetIfNeeded( bytes32 _key, address _asset, address _local, uint256 _amount ) internal view returns (uint256, address) { AppStorage storage s = LibConnextStorage.connextStorage(); // If the asset is the local asset, no swap needed if (_asset == _local) { return (_amount, _local); } SwapUtils.Swap storage ipool = s.swapStorages[_key]; // Calculate the swap using the appropriate pool. if (ipool.exists()) { // if internal swap pool exists uint8 tokenIndexIn = getTokenIndexFromStableSwapPool(_key, _asset); uint8 tokenIndexOut = getTokenIndexFromStableSwapPool(_key, _local); return (ipool.calculateSwap(tokenIndexIn, tokenIndexOut, _amount), _local); } else { IStableSwap pool = IStableSwap(getConfig(_key).adoptedToLocalExternalPools); return (pool.calculateSwapFromAddress(_asset, _local, _amount), _local); } } // ============ Internal: Token ID Helpers ============ /** * @notice Gets the canonical information for a given candidate. * @dev First checks the `address(0)` convention, then checks if the asset given is the * adopted asset, then calculates the local address. * @return TokenId The canonical token ID information for the given candidate. */ function getCanonicalTokenId(address _candidate, AppStorage storage s) internal view returns (TokenId memory) { TokenId memory _canonical; // If candidate is address(0), return an empty `_canonical`. if (_candidate == address(0)) { return _canonical; } // Check to see if candidate is an adopted asset. _canonical = s.adoptedToCanonical[_candidate]; if (_canonical.domain != 0) { // Candidate is an adopted asset, return canonical info. return _canonical; } // Candidate was not adopted; it could be the local address. // IFF this domain is the canonical domain, then the local == canonical. // Otherwise, it will be the representation asset. if (isLocalOrigin(_candidate, s)) { // The token originates on this domain, canonical information is the information // of the candidate _canonical.domain = s.domain; _canonical.id = TypeCasts.addressToBytes32(_candidate); } else { // on a remote domain, return the representation _canonical = s.representationToCanonical[_candidate]; } return _canonical; } /** * @notice Determine if token is of local origin (i.e. it is a locally originating contract, * and NOT a token deployed by the bridge). * @param s AppStorage instance. * @return bool true if token is locally originating, false otherwise. */ function isLocalOrigin(address _token, AppStorage storage s) internal view returns (bool) { // If the token contract WAS deployed by the bridge, it will be stored in this mapping. // If so, the token is NOT of local origin. if (s.representationToCanonical[_token].domain != 0) { return false; } // If the contract was NOT deployed by the bridge, but the contract does exist, then it // IS of local origin. Returns true if code exists at `_addr`. return _token.code.length != 0; } /** * @notice Get the local asset address for a given canonical key, id, and domain. * @param _key - The hash of canonical id and domain. * @param _id Canonical ID. * @param _domain Canonical domain. * @param s AppStorage instance. * @return address of the the local asset. */ function getLocalAsset( bytes32 _key, bytes32 _id, uint32 _domain, AppStorage storage s ) internal view returns (address) { if (_domain == s.domain) { // Token is of local origin return TypeCasts.bytes32ToAddress(_id); } else { // Token is a representation of a token of remote origin return getConfig(_key).representation; } } /** * @notice Calculates the hash of canonical ID and domain. * @dev This hash is used as the key for many asset-related mappings. * @param _id Canonical ID. * @param _domain Canonical domain. * @return bytes32 Canonical hash, used as key for accessing token info from mappings. */ function calculateCanonicalHash(bytes32 _id, uint32 _domain) internal pure returns (bytes32) { return keccak256(abi.encode(_id, _domain)); } // ============ Internal: Math ============ /** * @notice This function calculates slippage as a %age of the amount in, and normalizes * That to the `_out` decimals. * * @dev This *ONLY* works for 1:1 assets * * @param _in The decimals of the asset in / amount in * @param _out The decimals of the target asset * @param _amountIn The starting amount for the swap * @param _slippage The slippage allowed for the swap, in BPS * @return uint256 The minimum amount out for the swap */ function calculateSlippageBoundary( uint8 _in, uint8 _out, uint256 _amountIn, uint256 _slippage ) internal pure returns (uint256) { if (_amountIn == 0) { return 0; } // Get the min recieved (in same decimals as _amountIn) uint256 min = (_amountIn * (Constants.BPS_FEE_DENOMINATOR - _slippage)) / Constants.BPS_FEE_DENOMINATOR; return normalizeDecimals(_in, _out, min); } /** * @notice This function translates the _amount in _in decimals * to _out decimals * * @param _in The decimals of the asset in / amount in * @param _out The decimals of the target asset * @param _amount The value to normalize to the `_out` decimals * @return uint256 Normalized decimals. */ function normalizeDecimals( uint8 _in, uint8 _out, uint256 _amount ) internal pure returns (uint256) { if (_in == _out) { return _amount; } // Convert this value to the same decimals as _out uint256 normalized; if (_in < _out) { normalized = _amount * (10**(_out - _in)); } else { normalized = _amount / (10**(_in - _out)); } return normalized; } }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; // ============ External Imports ============ import {TypedMemView} from "../../../shared/libraries/TypedMemView.sol"; import {TokenId} from "./TokenId.sol"; library BridgeMessage { // ============ Libraries ============ using TypedMemView for bytes; using TypedMemView for bytes29; // ============ Enums ============ // WARNING: do NOT re-write the numbers / order // of message types in an upgrade; // will cause in-flight messages to be mis-interpreted // The Types enum it defines the types of `views` that we use in BridgeMessage. A view // points to a specific part of the memory and can slice bytes out of it. When we give a `type` to a view, // we define the structure of the data it points to, so that we can do easy runtime assertions without // having to fetch the whole data from memory and check for ourselves. In BridgeMessage.sol // the types of `data` we can have are defined in this enum and may belong to different taxonomies. // For example, a `Message` includes a `TokenId` and an Action (a `Transfer`). // The Message is a different TYPE of data than a TokenId or Transfer, as TokenId and Transfer live inside // the message. For that reason, we define them as different data types and we add them to the same enum // for ease of use. enum Types { Invalid, // 0 TokenId, // 1 Message, // 2 Transfer // 3 } // ============ Constants ============ uint256 private constant TOKEN_ID_LEN = 36; // 4 bytes domain + 32 bytes id uint256 private constant IDENTIFIER_LEN = 1; uint256 private constant TRANSFER_LEN = 65; // 1 byte identifier + 32 bytes amount + 32 bytes transfer id // ============ Modifiers ============ /** * @notice Asserts a message is of type `_t` * @param _view The message * @param _t The expected type */ modifier typeAssert(bytes29 _view, Types _t) { _view.assertType(uint40(_t)); _; } // ============ Internal Functions ============ /** * @notice Checks that Action is valid type * @param _action The action * @return TRUE if action is valid */ function isValidAction(bytes29 _action) internal pure returns (bool) { return isTransfer(_action); } /** * @notice Checks that view is a valid message length * @param _view The bytes string * @return TRUE if message is valid */ function isValidMessageLength(bytes29 _view) internal pure returns (bool) { uint256 _len = _view.len(); return _len == TOKEN_ID_LEN + TRANSFER_LEN; } /** * @notice Formats an action message * @param _tokenId The token ID * @param _action The action * @return The formatted message */ function formatMessage(bytes29 _tokenId, bytes29 _action) internal view typeAssert(_tokenId, Types.TokenId) returns (bytes memory) { require(isValidAction(_action), "!action"); bytes29[] memory _views = new bytes29[](2); _views[0] = _tokenId; _views[1] = _action; return TypedMemView.join(_views); } /** * @notice Returns the type of the message * @param _view The message * @return The type of the message */ function messageType(bytes29 _view) internal pure returns (Types) { return Types(uint8(_view.typeOf())); } /** * @notice Checks that the message is of the specified type * @param _type the type to check for * @param _action The message * @return True if the message is of the specified type */ function isType(bytes29 _action, Types _type) internal pure returns (bool) { return actionType(_action) == uint8(_type) && messageType(_action) == _type; } /** * @notice Checks that the message is of type Transfer * @param _action The message * @return True if the message is of type Transfer */ function isTransfer(bytes29 _action) internal pure returns (bool) { return isType(_action, Types.Transfer); } /** * @notice Formats Transfer * @param _amnt The transfer amount * @param _transferId The unique identifier of the transfer * @return */ function formatTransfer(uint256 _amnt, bytes32 _transferId) internal pure returns (bytes29) { return abi.encodePacked(Types.Transfer, _amnt, _transferId).ref(uint40(Types.Transfer)); } /** * @notice Serializes a Token ID struct * @param _tokenId The token id struct * @return The formatted Token ID */ function formatTokenId(TokenId memory _tokenId) internal pure returns (bytes29) { return formatTokenId(_tokenId.domain, _tokenId.id); } /** * @notice Creates a serialized Token ID from components * @param _domain The domain * @param _id The ID * @return The formatted Token ID */ function formatTokenId(uint32 _domain, bytes32 _id) internal pure returns (bytes29) { return abi.encodePacked(_domain, _id).ref(uint40(Types.TokenId)); } /** * @notice Retrieves the domain from a TokenID * @param _tokenId The message * @return The domain */ function domain(bytes29 _tokenId) internal pure typeAssert(_tokenId, Types.TokenId) returns (uint32) { return uint32(_tokenId.indexUint(0, 4)); } /** * @notice Retrieves the ID from a TokenID * @param _tokenId The message * @return The ID */ function id(bytes29 _tokenId) internal pure typeAssert(_tokenId, Types.TokenId) returns (bytes32) { // before = 4 bytes domain return _tokenId.index(4, 32); } /** * @notice Retrieves the EVM ID * @param _tokenId The message * @return The EVM ID */ function evmId(bytes29 _tokenId) internal pure typeAssert(_tokenId, Types.TokenId) returns (address) { // before = 4 bytes domain + 12 bytes empty to trim for address return _tokenId.indexAddress(16); } /** * @notice Retrieves the action identifier from message * @param _message The action * @return The message type */ function msgType(bytes29 _message) internal pure returns (uint8) { return uint8(_message.indexUint(TOKEN_ID_LEN, 1)); } /** * @notice Retrieves the identifier from action * @param _action The action * @return The action type */ function actionType(bytes29 _action) internal pure returns (uint8) { return uint8(_action.indexUint(0, 1)); } /** * @notice Retrieves the amount from a Transfer * @param _transferAction The message * @return The amount */ function amnt(bytes29 _transferAction) internal pure returns (uint256) { // before = 1 byte identifier = 1 bytes return _transferAction.indexUint(1, 32); } /** * @notice Retrieves the transfer id from a Transfer * @param _transferAction The message * @return The id */ function transferId(bytes29 _transferAction) internal pure returns (bytes32) { // before = 1 byte identifier + 32 bytes amount = 33 bytes return _transferAction.index(33, 32); } /** * @notice Retrieves the token ID from a Message * @param _message The message * @return The ID */ function tokenId(bytes29 _message) internal pure typeAssert(_message, Types.Message) returns (bytes29) { return _message.slice(0, TOKEN_ID_LEN, uint40(Types.TokenId)); } /** * @notice Retrieves the action data from a Message * @param _message The message * @return The action */ function action(bytes29 _message) internal pure typeAssert(_message, Types.Message) returns (bytes29) { uint256 _actionLen = _message.len() - TOKEN_ID_LEN; uint40 _type = uint40(msgType(_message)); return _message.slice(TOKEN_ID_LEN, _actionLen, _type); } /** * @notice Converts to a Message * @param _message The message * @return The newly typed message */ function tryAsMessage(bytes29 _message) internal pure returns (bytes29) { if (isValidMessageLength(_message)) { return _message.castTo(uint40(Types.Message)); } return TypedMemView.nullView(); } /** * @notice Asserts that the message is of type Message * @param _view The message * @return The message */ function mustBeMessage(bytes29 _view) internal pure returns (bytes29) { return tryAsMessage(_view).assertValid(); } }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; library Constants { // ============= Initial Values ============= /** * @notice Sets the initial lp fee at 5 bps */ uint256 public constant INITIAL_LIQUIDITY_FEE_NUMERATOR = 9_995; /** * @notice Sets the initial max routers per transfer */ uint256 public constant INITIAL_MAX_ROUTERS = 5; /** * @notice Sets the initial max routers per transfer */ uint16 public constant INITIAL_AAVE_REFERRAL_CODE = 0; // ============= // ============= Unchangeable Values ============= // ============= Facets /** * @notice Reentrancy modifier for diamond */ uint256 internal constant NOT_ENTERED = 1; /** * @notice Reentrancy modifier for diamond */ uint256 internal constant ENTERED = 2; /** * @notice Contains hash of empty bytes */ bytes32 internal constant EMPTY_HASH = keccak256(""); /** * @notice Denominator for BPS values */ uint256 public constant BPS_FEE_DENOMINATOR = 10_000; /** * @notice Value for delay used on governance */ uint256 public constant GOVERNANCE_DELAY = 7 days; /** * @notice Required gas amount to be leftover after passing in `gasleft` when * executing calldata (see `_executeCalldata` method). */ uint256 public constant EXECUTE_CALLDATA_RESERVE_GAS = 10_000; /** * @notice Portal referral code */ uint16 public constant AAVE_REFERRAL_CODE = 0; // ============= ConnextPriceOracle /** * @notice Valid period for a price delivered by the price oracle */ uint256 public constant ORACLE_VALID_PERIOD = 1 minutes; /** * @notice Valid wiggle room for future timestamps (3s) used by `setDirectPrice` */ uint256 public constant FUTURE_TIME_BUFFER = 3; /** * @notice Defalt decimals values are normalized to */ uint8 public constant DEFAULT_NORMALIZED_DECIMALS = uint8(18); /** * @notice Bytes of return data copied back when using `excessivelySafeCall` */ uint16 public constant DEFAULT_COPY_BYTES = 256; /** * @notice Valid deadline extension used when swapping (1hr) */ uint256 public constant DEFAULT_DEADLINE_EXTENSION = 3600; // ============= Swaps /** * @notice the precision all pools tokens will be converted to * @dev stored here to keep easily in sync between `SwapUtils` and `SwapUtilsExternal` * * The minimum in a pool is 2 (nextUSDC, USDC), and the maximum allowed is 16. While * we do not have pools supporting this number of token, allowing a larger value leaves * the possibility open to pool multiple stable local/adopted pairs, garnering greater * capital efficiency. 16 specifically was chosen as a bit of a sweet spot between the * default of 32 and what we will realistically host in pools. */ uint256 public constant MINIMUM_POOLED_TOKENS = 2; uint256 public constant MAXIMUM_POOLED_TOKENS = 16; /** * @notice the precision all pools tokens will be converted to * @dev stored here to keep easily in sync between `SwapUtils` and `SwapUtilsExternal` */ uint8 public constant POOL_PRECISION_DECIMALS = 18; /** * @notice the denominator used to calculate admin and LP fees. For example, an * LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR) * @dev stored here to keep easily in sync between `SwapUtils` and `SwapUtilsExternal` */ uint256 public constant FEE_DENOMINATOR = 1e10; /** * @notice Max swap fee is 1% or 100bps of each swap * @dev stored here to keep easily in sync between `SwapUtils` and `SwapUtilsExternal` */ uint256 public constant MAX_SWAP_FEE = 1e8; /** * @notice Max adminFee is 100% of the swapFee. adminFee does not add additional fee on top of swapFee. * Instead it takes a certain % of the swapFee. Therefore it has no impact on the * users but only on the earnings of LPs * @dev stored here to keep easily in sync between `SwapUtils` and `SwapUtilsExternal` */ uint256 public constant MAX_ADMIN_FEE = 1e10; /** * @notice constant value used as max loop limit * @dev stored here to keep easily in sync between `SwapUtils` and `SwapUtilsExternal` */ uint256 public constant MAX_LOOP_LIMIT = 256; // Constant value used as max delay time for removing swap after disabled uint256 internal constant REMOVE_DELAY = 7 days; /** * @notice constant values used in ramping A calculations * @dev stored here to keep easily in sync between `SwapUtils` and `SwapUtilsExternal` */ uint256 public constant A_PRECISION = 100; uint256 public constant MAX_A = 10**6; uint256 public constant MAX_A_CHANGE = 2; uint256 public constant MIN_RAMP_TIME = 14 days; uint256 public constant MIN_RAMP_DELAY = 1 days; }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import {IStableSwap} from "../interfaces/IStableSwap.sol"; import {IConnectorManager} from "../../../messaging/interfaces/IConnectorManager.sol"; import {SwapUtils} from "./SwapUtils.sol"; import {TokenId} from "./TokenId.sol"; /** * @notice THIS FILE DEFINES OUR STORAGE LAYOUT AND ID GENERATION SCHEMA. IT CAN ONLY BE MODIFIED FREELY FOR FRESH * DEPLOYS. If you are modifiying this file for an upgrade, you must **CAREFULLY** ensure * the contract storage layout is not impacted. * * BE VERY CAREFUL MODIFYING THE VALUES IN THIS FILE! */ // ============= Enum ============= /// @notice Enum representing address role // Returns uint // None - 0 // Router - 1 // Watcher - 2 // Admin - 3 enum Role { None, RouterAdmin, Watcher, Admin } /** * @notice Enum representing status of destination transfer * @dev Status is only assigned on the destination domain, will always be "none" for the * origin domains * @return uint - Index of value in enum */ enum DestinationTransferStatus { None, // 0 Reconciled, // 1 Executed, // 2 Completed // 3 - executed + reconciled } /** * @notice These are the parameters that will remain constant between the * two chains. They are supplied on `xcall` and should be asserted on `execute` * @property to - The account that receives funds, in the event of a crosschain call, * will receive funds if the call fails. * * @param originDomain - The originating domain (i.e. where `xcall` is called) * @param destinationDomain - The final domain (i.e. where `execute` / `reconcile` are called)\ * @param canonicalDomain - The canonical domain of the asset you are bridging * @param to - The address you are sending funds (and potentially data) to * @param delegate - An address who can execute txs on behalf of `to`, in addition to allowing relayers * @param receiveLocal - If true, will use the local asset on the destination instead of adopted. * @param callData - The data to execute on the receiving chain. If no crosschain call is needed, then leave empty. * @param slippage - Slippage user is willing to accept from original amount in expressed in BPS (i.e. if * a user takes 1% slippage, this is expressed as 1_000) * @param originSender - The msg.sender of the xcall * @param bridgedAmt - The amount sent over the bridge (after potential AMM on xcall) * @param normalizedIn - The amount sent to `xcall`, normalized to 18 decimals * @param nonce - The nonce on the origin domain used to ensure the transferIds are unique * @param canonicalId - The unique identifier of the canonical token corresponding to bridge assets */ struct TransferInfo { uint32 originDomain; uint32 destinationDomain; uint32 canonicalDomain; address to; address delegate; bool receiveLocal; bytes callData; uint256 slippage; address originSender; uint256 bridgedAmt; uint256 normalizedIn; uint256 nonce; bytes32 canonicalId; } /** * @notice * @param params - The TransferInfo. These are consistent across sending and receiving chains. * @param routers - The routers who you are sending the funds on behalf of. * @param routerSignatures - Signatures belonging to the routers indicating permission to use funds * for the signed transfer ID. * @param sequencer - The sequencer who assigned the router path to this transfer. * @param sequencerSignature - Signature produced by the sequencer for path assignment accountability * for the path that was signed. */ struct ExecuteArgs { TransferInfo params; address[] routers; bytes[] routerSignatures; address sequencer; bytes sequencerSignature; } /** * @notice Contains configs for each router * @param approved Whether the router is allowlisted, settable by admin * @param portalApproved Whether the router is allowlisted for portals, settable by admin * @param routerOwners The address that can update the `recipient` * @param proposedRouterOwners Owner candidates * @param proposedRouterTimestamp When owner candidate was proposed (there is a delay to acceptance) */ struct RouterConfig { bool approved; bool portalApproved; address owner; address recipient; address proposed; uint256 proposedTimestamp; } /** * @notice Contains configurations for tokens * @dev Struct will be stored on the hash of the `canonicalId` and `canonicalDomain`. There are also * two separate reverse lookups, that deliver plaintext information based on the passed in address (can * either be representation or adopted address passed in). * * If the decimals are updated in a future token upgrade, the transfers should fail. If that happens, the * asset and swaps must be removed, and then they can be readded * * @param representation Address of minted asset on this domain. If the token is of local origin (meaning it was * originally deployed on this chain), this MUST map to address(0). * @param representationDecimals Decimals of minted asset on this domain * @param adopted Address of adopted asset on this domain * @param adoptedDecimals Decimals of adopted asset on this domain * @param adoptedToLocalExternalPools Holds the AMMs for swapping in and out of local assets * @param approval Allowed assets * @param cap Liquidity caps of whitelisted assets. If 0, no cap is enforced. * @param custodied Custodied balance by address */ struct TokenConfig { address representation; uint8 representationDecimals; address adopted; uint8 adoptedDecimals; address adoptedToLocalExternalPools; bool approval; uint256 cap; uint256 custodied; } struct AppStorage { // // 0 bool initialized; // // Connext // // 1 uint256 LIQUIDITY_FEE_NUMERATOR; /** * @notice The local address that is custodying relayer fees */ // 2 address relayerFeeVault; /** * @notice Nonce for the contract, used to keep unique transfer ids. * @dev Assigned at first interaction (xcall on origin domain). */ // 3 uint256 nonce; /** * @notice The domain this contract exists on. * @dev Must match the domain identifier, which is distinct from the "chainId". */ // 4 uint32 domain; /** * @notice Mapping of adopted to canonical asset information. */ // 5 mapping(address => TokenId) adoptedToCanonical; /** * @notice Mapping of representation to canonical asset information. */ // 6 mapping(address => TokenId) representationToCanonical; /** * @notice Mapping of hash(canonicalId, canonicalDomain) to token config on this domain. */ // 7 mapping(bytes32 => TokenConfig) tokenConfigs; /** * @notice Mapping to track transfer status on destination domain */ // 8 mapping(bytes32 => DestinationTransferStatus) transferStatus; /** * @notice Mapping holding router address that provided fast liquidity. */ // 9 mapping(bytes32 => address[]) routedTransfers; /** * @notice Mapping of router to available balance of an asset. * @dev Routers should always store liquidity that they can expect to receive via the bridge on * this domain (the local asset). */ // 10 mapping(address => mapping(address => uint256)) routerBalances; /** * @notice Mapping of approved relayers * @dev Send relayer fee if msg.sender is approvedRelayer; otherwise revert. */ // 11 mapping(address => bool) approvedRelayers; /** * @notice The max amount of routers a payment can be routed through. */ // 12 uint256 maxRoutersPerTransfer; /** * @notice Stores a mapping of transfer id to slippage overrides. */ // 13 mapping(bytes32 => uint256) slippage; /** * @notice Stores a mapping of transfer id to receive local overrides. */ // 14 mapping(bytes32 => bool) receiveLocalOverride; /** * @notice Stores a mapping of remote routers keyed on domains. * @dev Addresses are cast to bytes32. * This mapping is required because the Connext now contains the BridgeRouter and must implement * the remotes interface. */ // 15 mapping(uint32 => bytes32) remotes; // // ProposedOwnable // // 17 address _proposed; // 18 uint256 _proposedOwnershipTimestamp; // 19 bool _routerAllowlistRemoved; // 20 uint256 _routerAllowlistTimestamp; /** * @notice Stores a mapping of address to Roles * @dev returns uint representing the enum Role value */ // 21 mapping(address => Role) roles; // // RouterFacet // // 22 mapping(address => RouterConfig) routerConfigs; // // ReentrancyGuard // // 23 uint256 _status; // 24 uint256 _xcallStatus; // // StableSwap // /** * @notice Mapping holding the AMM storages for swapping in and out of local assets * @dev Swaps for an adopted asset <> local asset (i.e. POS USDC <> nextUSDC on polygon) * Struct storing data responsible for automatic market maker functionalities. In order to * access this data, this contract uses SwapUtils library. For more details, see SwapUtils.sol. */ // 25 mapping(bytes32 => SwapUtils.Swap) swapStorages; /** * @notice Maps token address to an index in the pool. Used to prevent duplicate tokens in the pool. * @dev getTokenIndex function also relies on this mapping to retrieve token index. */ // 26 mapping(bytes32 => mapping(address => uint8)) tokenIndexes; /** * The address of an existing LPToken contract to use as a target * this target must be the address which connext deployed on this chain. */ // 27 address lpTokenTargetAddress; /** * @notice Stores whether or not bribing, AMMs, have been paused. */ // 28 bool _paused; // // AavePortals // /** * @notice Address of Aave Pool contract. */ // 29 address aavePool; /** * @notice Fee percentage numerator for using Portal liquidity. * @dev Assumes the same basis points as the liquidity fee. */ // 30 uint256 aavePortalFeeNumerator; /** * @notice Mapping to store the transfer liquidity amount provided by Aave Portals. */ // 31 mapping(bytes32 => uint256) portalDebt; /** * @notice Mapping to store the transfer liquidity amount provided by Aave Portals. */ // 32 mapping(bytes32 => uint256) portalFeeDebt; /** * @notice Mapping of approved sequencers * @dev Sequencer address provided must belong to an approved sequencer in order to call `execute` * for the fast liquidity route. */ // 33 mapping(address => bool) approvedSequencers; /** * @notice Remote connection manager for xapp. */ // 34 IConnectorManager xAppConnectionManager; } library LibConnextStorage { function connextStorage() internal pure returns (AppStorage storage ds) { assembly { ds.slot := 0 } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.17; /******************************************************************************\ * Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) * EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 /******************************************************************************/ import {IDiamondCut} from "../interfaces/IDiamondCut.sol"; // Remember to add the loupe functions from DiamondLoupeFacet to the diamond. // The loupe functions are required by the EIP2535 Diamonds standard library LibDiamond { bytes32 constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage"); struct FacetAddressAndPosition { address facetAddress; uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array } struct FacetFunctionSelectors { bytes4[] functionSelectors; uint256 facetAddressPosition; // position of facetAddress in facetAddresses array } struct DiamondStorage { // maps function selector to the facet address and // the position of the selector in the facetFunctionSelectors.selectors array mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition; // maps facet addresses to function selectors mapping(address => FacetFunctionSelectors) facetFunctionSelectors; // facet addresses address[] facetAddresses; // Used to query if a contract implements an interface. // Used to implement ERC-165. mapping(bytes4 => bool) supportedInterfaces; // owner of the contract address contractOwner; // hash of proposed facets => acceptance time mapping(bytes32 => uint256) acceptanceTimes; // acceptance delay for upgrading facets uint256 acceptanceDelay; } function diamondStorage() internal pure returns (DiamondStorage storage ds) { bytes32 position = DIAMOND_STORAGE_POSITION; assembly { ds.slot := position } } event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function setContractOwner(address _newOwner) internal { DiamondStorage storage ds = diamondStorage(); emit OwnershipTransferred(ds.contractOwner, _newOwner); ds.contractOwner = _newOwner; } function contractOwner() internal view returns (address contractOwner_) { contractOwner_ = diamondStorage().contractOwner; } function acceptanceDelay() internal view returns (uint256) { return diamondStorage().acceptanceDelay; } function acceptanceTime(bytes32 _key) internal view returns (uint256) { return diamondStorage().acceptanceTimes[_key]; } function enforceIsContractOwner() internal view { require(msg.sender == diamondStorage().contractOwner, "LibDiamond: !contract owner"); } event DiamondCutProposed(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata, uint256 deadline); function proposeDiamondCut( IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata ) internal { // NOTE: to save gas, verification that `proposeDiamondCut` and `diamondCut` are not // included is performed in `diamondCut`, where there is already a loop over facets. // In the case where these cuts are performed, admins must call `rescindDiamondCut` DiamondStorage storage ds = diamondStorage(); uint256 acceptance = block.timestamp + ds.acceptanceDelay; ds.acceptanceTimes[keccak256(abi.encode(_diamondCut, _init, _calldata))] = acceptance; emit DiamondCutProposed(_diamondCut, _init, _calldata, acceptance); } event DiamondCutRescinded(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata); function rescindDiamondCut( IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata ) internal { // NOTE: you can always rescind a proposed facet cut as the owner, even if outside of the validity // period or befor the delay elpases delete diamondStorage().acceptanceTimes[keccak256(abi.encode(_diamondCut, _init, _calldata))]; emit DiamondCutRescinded(_diamondCut, _init, _calldata); } event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata); // Internal function version of diamondCut function diamondCut( IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata ) internal { DiamondStorage storage ds = diamondStorage(); bytes32 key = keccak256(abi.encode(_diamondCut, _init, _calldata)); if (ds.facetAddresses.length != 0) { uint256 time = ds.acceptanceTimes[key]; require(time != 0 && time <= block.timestamp, "LibDiamond: delay not elapsed"); // Reset the acceptance time to ensure the same set of updates cannot be replayed // without going through a proposal window // NOTE: the only time this will not be set to 0 is when there are no // existing facet addresses (on initialization, or when starting after a bad upgrade, // for example). // The only relevant case is the initial case, which has no acceptance time. otherwise, // there is no way to update the facet selector mapping to call `diamondCut`. // Avoiding setting the empty value will save gas on the initial deployment. delete ds.acceptanceTimes[key]; } // Otherwise, this is the first instance of deployment and it can be set automatically uint256 len = _diamondCut.length; for (uint256 facetIndex; facetIndex < len; ) { IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action; if (action == IDiamondCut.FacetCutAction.Add) { addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors); } else if (action == IDiamondCut.FacetCutAction.Replace) { replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors); } else if (action == IDiamondCut.FacetCutAction.Remove) { removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors); } else { revert("LibDiamondCut: Incorrect FacetCutAction"); } unchecked { ++facetIndex; } } emit DiamondCut(_diamondCut, _init, _calldata); initializeDiamondCut(_init, _calldata); } function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal { require(_functionSelectors.length != 0, "LibDiamondCut: No selectors in facet to cut"); DiamondStorage storage ds = diamondStorage(); require(_facetAddress != address(0), "LibDiamondCut: Add facet can't be address(0)"); uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length); // add new facet address if it does not exist if (selectorPosition == 0) { addFacet(ds, _facetAddress); } uint256 len = _functionSelectors.length; for (uint256 selectorIndex; selectorIndex < len; ) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress; require(oldFacetAddress == address(0), "LibDiamondCut: Can't add function that already exists"); addFunction(ds, selector, selectorPosition, _facetAddress); selectorPosition++; unchecked { ++selectorIndex; } } } function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal { uint256 len = _functionSelectors.length; require(len != 0, "LibDiamondCut: No selectors in facet to cut"); DiamondStorage storage ds = diamondStorage(); require(_facetAddress != address(0), "LibDiamondCut: Add facet can't be address(0)"); uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length); // add new facet address if it does not exist if (selectorPosition == 0) { addFacet(ds, _facetAddress); } for (uint256 selectorIndex; selectorIndex < len; ) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress; require(oldFacetAddress != _facetAddress, "LibDiamondCut: Can't replace function with same function"); removeFunction(ds, oldFacetAddress, selector); addFunction(ds, selector, selectorPosition, _facetAddress); selectorPosition++; unchecked { ++selectorIndex; } } } function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal { require(_functionSelectors.length != 0, "LibDiamondCut: No selectors in facet to cut"); DiamondStorage storage ds = diamondStorage(); // get the propose and cut selectors -- can never remove these bytes4 proposeSelector = IDiamondCut.proposeDiamondCut.selector; bytes4 cutSelector = IDiamondCut.diamondCut.selector; // if function does not exist then do nothing and return require(_facetAddress == address(0), "LibDiamondCut: Remove facet address must be address(0)"); uint256 len = _functionSelectors.length; for (uint256 selectorIndex; selectorIndex < len; ) { bytes4 selector = _functionSelectors[selectorIndex]; require(selector != proposeSelector && selector != cutSelector, "LibDiamondCut: Cannot remove cut selectors"); address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress; removeFunction(ds, oldFacetAddress, selector); unchecked { ++selectorIndex; } } } function addFacet(DiamondStorage storage ds, address _facetAddress) internal { enforceHasContractCode(_facetAddress, "LibDiamondCut: New facet has no code"); ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length; ds.facetAddresses.push(_facetAddress); } function addFunction( DiamondStorage storage ds, bytes4 _selector, uint96 _selectorPosition, address _facetAddress ) internal { ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition; ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector); ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress; } function removeFunction( DiamondStorage storage ds, address _facetAddress, bytes4 _selector ) internal { require(_facetAddress != address(0), "LibDiamondCut: Can't remove function that doesn't exist"); // an immutable function is a function defined directly in a diamond require(_facetAddress != address(this), "LibDiamondCut: Can't remove immutable function"); // replace selector with last selector, then delete last selector uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition; uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1; // if not the same then replace _selector with lastSelector if (selectorPosition != lastSelectorPosition) { bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition]; ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector; ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition); } // delete the last selector ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop(); delete ds.selectorToFacetAndPosition[_selector]; // if no more selectors for facet address then delete the facet address if (lastSelectorPosition == 0) { // replace facet address with last facet address and delete last facet address uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1; uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition; if (facetAddressPosition != lastFacetAddressPosition) { address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition]; ds.facetAddresses[facetAddressPosition] = lastFacetAddress; ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition; } ds.facetAddresses.pop(); delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition; } } function initializeDiamondCut(address _init, bytes memory _calldata) internal { if (_init == address(0)) { require(_calldata.length == 0, "LibDiamondCut: _init is address(0) but_calldata is not empty"); } else { require(_calldata.length != 0, "LibDiamondCut: _calldata is empty but _init is not address(0)"); if (_init != address(this)) { enforceHasContractCode(_init, "LibDiamondCut: _init address has no code"); } (bool success, bytes memory error) = _init.delegatecall(_calldata); if (!success) { if (error.length != 0) { // bubble up the error revert(string(error)); } else { revert("LibDiamondCut: _init function reverted"); } } } } function enforceHasContractCode(address _contract, string memory _errorMessage) internal view { require(_contract.code.length != 0, _errorMessage); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; /** * @title MathUtils library * @notice A library to be used in conjunction with SafeMath. Contains functions for calculating * differences between two uint256. */ library MathUtils { /** * @notice Compares a and b and returns true if the difference between a and b * is less than 1 or equal to each other. * @param a uint256 to compare with * @param b uint256 to compare with * @return True if the difference between a and b is less than 1 or equal, * otherwise return false */ function within1(uint256 a, uint256 b) internal pure returns (bool) { return (difference(a, b) < 1 + 1); // instead of <=1 } /** * @notice Calculates absolute difference between a and b * @param a uint256 to compare with * @param b uint256 to compare with * @return Difference between a and b */ function difference(uint256 a, uint256 b) internal pure returns (uint256) { if (a > b) { return a - b; } return b - a; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.17; import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {LPToken} from "../helpers/LPToken.sol"; import {AmplificationUtils} from "./AmplificationUtils.sol"; import {MathUtils} from "./MathUtils.sol"; import {AssetLogic} from "./AssetLogic.sol"; import {Constants} from "./Constants.sol"; /** * @title SwapUtils library * @notice A library to be used within Swap.sol. Contains functions responsible for custody and AMM functionalities. * @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library * for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins. * Admin functions should be protected within contracts using this library. */ library SwapUtils { using SafeERC20 for IERC20; using MathUtils for uint256; /*** EVENTS ***/ event TokenSwap( bytes32 indexed key, address indexed buyer, uint256 tokensSold, uint256 tokensBought, uint128 soldId, uint128 boughtId ); event AddLiquidity( bytes32 indexed key, address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event RemoveLiquidity(bytes32 indexed key, address indexed provider, uint256[] tokenAmounts, uint256 lpTokenSupply); event RemoveLiquidityOne( bytes32 indexed key, address indexed provider, uint256 lpTokenAmount, uint256 lpTokenSupply, uint256 boughtId, uint256 tokensBought ); event RemoveLiquidityImbalance( bytes32 indexed key, address indexed provider, uint256[] tokenAmounts, uint256[] fees, uint256 invariant, uint256 lpTokenSupply ); event NewAdminFee(bytes32 indexed key, uint256 newAdminFee); event NewSwapFee(bytes32 indexed key, uint256 newSwapFee); struct Swap { // variables around the ramp management of A, // the amplification coefficient * n ** (n - 1) // see Curve stableswap paper for details bytes32 key; uint256 initialA; uint256 futureA; uint256 initialATime; uint256 futureATime; // fee calculation uint256 swapFee; uint256 adminFee; LPToken lpToken; // contract references for all tokens being pooled IERC20[] pooledTokens; // multipliers for each pooled token's precision to get to Constants.POOL_PRECISION_DECIMALS // for example, TBTC has 18 decimals, so the multiplier should be 1. WBTC // has 8, so the multiplier should be 10 ** 18 / 10 ** 8 => 10 ** 10 uint256[] tokenPrecisionMultipliers; // the pool balance of each token, in the token's precision // the contract's actual token balance might differ uint256[] balances; // the admin fee balance of each token, in the token's precision uint256[] adminFees; // the flag if this pool disabled by admin. once disabled, only remove liquidity will work. bool disabled; // once pool disabled, admin can remove pool after passed removeTime. and reinitialize. uint256 removeTime; } // Struct storing variables used in calculations in the // calculateWithdrawOneTokenDY function to avoid stack too deep errors struct CalculateWithdrawOneTokenDYInfo { uint256 d0; uint256 d1; uint256 newY; uint256 feePerToken; uint256 preciseA; } // Struct storing variables used in calculations in the // {add,remove}Liquidity functions to avoid stack too deep errors struct ManageLiquidityInfo { uint256 d0; uint256 d1; uint256 d2; uint256 preciseA; LPToken lpToken; uint256 totalSupply; uint256[] balances; uint256[] multipliers; } /*** VIEW & PURE FUNCTIONS ***/ function _getAPrecise(Swap storage self) private view returns (uint256) { return AmplificationUtils._getAPrecise(self); } /** * @notice Calculate the dy, the amount of selected token that user receives and * the fee of withdrawing in one token * @param tokenAmount the amount to withdraw in the pool's precision * @param tokenIndex which token will be withdrawn * @param self Swap struct to read from * @return the amount of token user will receive */ function calculateWithdrawOneToken( Swap storage self, uint256 tokenAmount, uint8 tokenIndex ) internal view returns (uint256) { (uint256 availableTokenAmount, ) = _calculateWithdrawOneToken( self, tokenAmount, tokenIndex, self.lpToken.totalSupply() ); return availableTokenAmount; } function _calculateWithdrawOneToken( Swap storage self, uint256 tokenAmount, uint8 tokenIndex, uint256 totalSupply ) private view returns (uint256, uint256) { uint256 dy; uint256 newY; uint256 currentY; (dy, newY, currentY) = calculateWithdrawOneTokenDY(self, tokenIndex, tokenAmount, totalSupply); // dy_0 (without fees) // dy, dy_0 - dy uint256 dySwapFee = (currentY - newY) / self.tokenPrecisionMultipliers[tokenIndex] - dy; return (dy, dySwapFee); } /** * @notice Calculate the dy of withdrawing in one token * @param self Swap struct to read from * @param tokenIndex which token will be withdrawn * @param tokenAmount the amount to withdraw in the pools precision * @return the d and the new y after withdrawing one token */ function calculateWithdrawOneTokenDY( Swap storage self, uint8 tokenIndex, uint256 tokenAmount, uint256 totalSupply ) internal view returns ( uint256, uint256, uint256 ) { // Get the current D, then solve the stableswap invariant // y_i for D - tokenAmount uint256[] memory xp = _xp(self); require(tokenIndex < xp.length, "index out of range"); CalculateWithdrawOneTokenDYInfo memory v = CalculateWithdrawOneTokenDYInfo(0, 0, 0, 0, 0); v.preciseA = _getAPrecise(self); v.d0 = getD(xp, v.preciseA); v.d1 = v.d0 - ((tokenAmount * v.d0) / totalSupply); require(tokenAmount <= xp[tokenIndex], "exceeds available"); v.newY = getYD(v.preciseA, tokenIndex, xp, v.d1); uint256[] memory xpReduced = new uint256[](xp.length); v.feePerToken = _feePerToken(self.swapFee, xp.length); // TODO: Set a length variable (at top) instead of reading xp.length on each loop. uint256 len = xp.length; for (uint256 i; i < len; ) { uint256 xpi = xp[i]; // if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY // else dxExpected = xp[i] - (xp[i] * d1 / d0) // xpReduced[i] -= dxExpected * fee / Constants.FEE_DENOMINATOR xpReduced[i] = xpi - ((((i == tokenIndex) ? ((xpi * v.d1) / v.d0 - v.newY) : (xpi - (xpi * v.d1) / v.d0)) * v.feePerToken) / Constants.FEE_DENOMINATOR); unchecked { ++i; } } uint256 dy = xpReduced[tokenIndex] - getYD(v.preciseA, tokenIndex, xpReduced, v.d1); dy = (dy - 1) / (self.tokenPrecisionMultipliers[tokenIndex]); return (dy, v.newY, xp[tokenIndex]); } /** * @notice Calculate the price of a token in the pool with given * precision-adjusted balances and a particular D. * * @dev This is accomplished via solving the invariant iteratively. * See the StableSwap paper and Curve.fi implementation for further details. * * x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A) * x_1**2 + b*x_1 = c * x_1 = (x_1**2 + c) / (2*x_1 + b) * * @param a the amplification coefficient * n ** (n - 1). See the StableSwap paper for details. * @param tokenIndex Index of token we are calculating for. * @param xp a precision-adjusted set of pool balances. Array should be * the same cardinality as the pool. * @param d the stableswap invariant * @return the price of the token, in the same precision as in xp */ function getYD( uint256 a, uint8 tokenIndex, uint256[] memory xp, uint256 d ) internal pure returns (uint256) { uint256 numTokens = xp.length; require(tokenIndex < numTokens, "Token not found"); uint256 c = d; uint256 s; uint256 nA = a * numTokens; for (uint256 i; i < numTokens; ) { if (i != tokenIndex) { s += xp[i]; c = (c * d) / (xp[i] * numTokens); // If we were to protect the division loss we would have to keep the denominator separate // and divide at the end. However this leads to overflow with large numTokens or/and D. // c = c * D * D * D * ... overflow! } unchecked { ++i; } } c = (c * d * Constants.A_PRECISION) / (nA * numTokens); uint256 b = s + ((d * Constants.A_PRECISION) / nA); uint256 yPrev; // Select d as the starting point of the Newton method. Because y < D // D is the best option as the starting point in case the pool is very imbalanced. uint256 y = d; for (uint256 i; i < Constants.MAX_LOOP_LIMIT; ) { yPrev = y; y = ((y * y) + c) / ((y * 2) + b - d); if (y.within1(yPrev)) { return y; } unchecked { ++i; } } revert("Approximation did not converge"); } /** * @notice Get D, the StableSwap invariant, based on a set of balances and a particular A. * @param xp a precision-adjusted set of pool balances. Array should be the same cardinality * as the pool. * @param a the amplification coefficient * n ** (n - 1) in A_PRECISION. * See the StableSwap paper for details * @return the invariant, at the precision of the pool */ function getD(uint256[] memory xp, uint256 a) internal pure returns (uint256) { uint256 numTokens = xp.length; uint256 s; for (uint256 i; i < numTokens; ) { s += xp[i]; unchecked { ++i; } } if (s == 0) { return 0; } uint256 prevD; uint256 d = s; uint256 nA = a * numTokens; for (uint256 i; i < Constants.MAX_LOOP_LIMIT; ) { uint256 dP = d; for (uint256 j; j < numTokens; ) { dP = (dP * d) / (xp[j] * numTokens); // If we were to protect the division loss we would have to keep the denominator separate // and divide at the end. However this leads to overflow with large numTokens or/and D. // dP = dP * D * D * D * ... overflow! unchecked { ++j; } } prevD = d; d = (((nA * s) / Constants.A_PRECISION + dP * numTokens) * d) / ((((nA - Constants.A_PRECISION) * d) / Constants.A_PRECISION + (numTokens + 1) * dP)); if (d.within1(prevD)) { return d; } unchecked { ++i; } } // Convergence should occur in 4 loops or less. If this is reached, there may be something wrong // with the pool. If this were to occur repeatedly, LPs should withdraw via `removeLiquidity()` // function which does not rely on D. revert("D does not converge"); } /** * @notice Given a set of balances and precision multipliers, return the * precision-adjusted balances. * * @param balances an array of token balances, in their native precisions. * These should generally correspond with pooled tokens. * * @param precisionMultipliers an array of multipliers, corresponding to * the amounts in the balances array. When multiplied together they * should yield amounts at the pool's precision. * * @return an array of amounts "scaled" to the pool's precision */ function _xp(uint256[] memory balances, uint256[] memory precisionMultipliers) internal pure returns (uint256[] memory) { uint256 numTokens = balances.length; require(numTokens == precisionMultipliers.length, "mismatch multipliers"); uint256[] memory xp = new uint256[](numTokens); for (uint256 i; i < numTokens; ) { xp[i] = balances[i] * precisionMultipliers[i]; unchecked { ++i; } } return xp; } /** * @notice Return the precision-adjusted balances of all tokens in the pool * @param self Swap struct to read from * @return the pool balances "scaled" to the pool's precision, allowing * them to be more easily compared. */ function _xp(Swap storage self) internal view returns (uint256[] memory) { return _xp(self.balances, self.tokenPrecisionMultipliers); } /** * @notice Get the virtual price, to help calculate profit * @param self Swap struct to read from * @return the virtual price, scaled to precision of Constants.POOL_PRECISION_DECIMALS */ function getVirtualPrice(Swap storage self) internal view returns (uint256) { uint256 d = getD(_xp(self), _getAPrecise(self)); LPToken lpToken = self.lpToken; uint256 supply = lpToken.totalSupply(); if (supply != 0) { return (d * (10**uint256(Constants.POOL_PRECISION_DECIMALS))) / supply; } return 0; } /** * @notice Calculate the new balances of the tokens given the indexes of the token * that is swapped from (FROM) and the token that is swapped to (TO). * This function is used as a helper function to calculate how much TO token * the user should receive on swap. * * @param preciseA precise form of amplification coefficient * @param tokenIndexFrom index of FROM token * @param tokenIndexTo index of TO token * @param x the new total amount of FROM token * @param xp balances of the tokens in the pool * @return the amount of TO token that should remain in the pool */ function getY( uint256 preciseA, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 x, uint256[] memory xp ) internal pure returns (uint256) { uint256 numTokens = xp.length; require(tokenIndexFrom != tokenIndexTo, "compare token to itself"); require(tokenIndexFrom < numTokens && tokenIndexTo < numTokens, "token not found"); uint256 d = getD(xp, preciseA); uint256 c = d; uint256 s; uint256 nA = numTokens * preciseA; uint256 _x; for (uint256 i; i < numTokens; ) { if (i == tokenIndexFrom) { _x = x; } else if (i != tokenIndexTo) { _x = xp[i]; } else { unchecked { ++i; } continue; } s += _x; c = (c * d) / (_x * numTokens); // If we were to protect the division loss we would have to keep the denominator separate // and divide at the end. However this leads to overflow with large numTokens or/and D. // c = c * D * D * D * ... overflow! unchecked { ++i; } } c = (c * d * Constants.A_PRECISION) / (nA * numTokens); uint256 b = s + ((d * Constants.A_PRECISION) / nA); uint256 yPrev; uint256 y = d; // iterative approximation for (uint256 i; i < Constants.MAX_LOOP_LIMIT; ) { yPrev = y; y = ((y * y) + c) / ((y * 2) + b - d); if (y.within1(yPrev)) { return y; } unchecked { ++i; } } revert("Approximation did not converge"); } /** * @notice Externally calculates a swap between two tokens. * @param self Swap struct to read from * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dx the number of tokens to sell. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @return dy the number of tokens the user will get */ function calculateSwap( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) internal view returns (uint256 dy) { (dy, ) = _calculateSwap(self, tokenIndexFrom, tokenIndexTo, dx, self.balances); } /** * @notice Externally calculates a swap between two tokens. * @param self Swap struct to read from * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dy the number of tokens to buy. * @return dx the number of tokens the user have to transfer + fee */ function calculateSwapInv( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dy ) internal view returns (uint256 dx) { (dx, ) = _calculateSwapInv(self, tokenIndexFrom, tokenIndexTo, dy, self.balances); } /** * @notice Internally calculates a swap between two tokens. * * @dev The caller is expected to transfer the actual amounts (dx and dy) * using the token contracts. * * @param self Swap struct to read from * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dx the number of tokens to sell. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @return dy the number of tokens the user will get in the token's precision. ex WBTC -> 8 * @return dyFee the associated fee in multiplied precision (Constants.POOL_PRECISION_DECIMALS) */ function _calculateSwap( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256[] memory balances ) internal view returns (uint256 dy, uint256 dyFee) { uint256[] memory multipliers = self.tokenPrecisionMultipliers; uint256[] memory xp = _xp(balances, multipliers); require(tokenIndexFrom < xp.length && tokenIndexTo < xp.length, "index out of range"); uint256 x = dx * multipliers[tokenIndexFrom] + xp[tokenIndexFrom]; uint256 y = getY(_getAPrecise(self), tokenIndexFrom, tokenIndexTo, x, xp); dy = xp[tokenIndexTo] - y - 1; dyFee = (dy * self.swapFee) / Constants.FEE_DENOMINATOR; dy = (dy - dyFee) / multipliers[tokenIndexTo]; } /** * @notice Internally calculates a swap between two tokens. * * @dev The caller is expected to transfer the actual amounts (dx and dy) * using the token contracts. * * @param self Swap struct to read from * @param tokenIndexFrom the token to sell * @param tokenIndexTo the token to buy * @param dy the number of tokens to buy. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @return dx the number of tokens the user have to deposit in the token's precision. ex WBTC -> 8 * @return dxFee the associated fee in multiplied precision (Constants.POOL_PRECISION_DECIMALS) */ function _calculateSwapInv( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dy, uint256[] memory balances ) internal view returns (uint256 dx, uint256 dxFee) { require(tokenIndexFrom != tokenIndexTo, "compare token to itself"); uint256[] memory multipliers = self.tokenPrecisionMultipliers; uint256[] memory xp = _xp(balances, multipliers); require(tokenIndexFrom < xp.length && tokenIndexTo < xp.length, "index out of range"); uint256 a = _getAPrecise(self); uint256 d0 = getD(xp, a); xp[tokenIndexTo] = xp[tokenIndexTo] - (dy * multipliers[tokenIndexTo]); uint256 x = getYD(a, tokenIndexFrom, xp, d0); dx = (x + 1) - xp[tokenIndexFrom]; dxFee = (dx * self.swapFee) / Constants.FEE_DENOMINATOR; dx = (dx + dxFee) / multipliers[tokenIndexFrom]; } /** * @notice A simple method to calculate amount of each underlying * tokens that is returned upon burning given amount of * LP tokens * * @param amount the amount of LP tokens that would to be burned on * withdrawal * @return array of amounts of tokens user will receive */ function calculateRemoveLiquidity(Swap storage self, uint256 amount) internal view returns (uint256[] memory) { return _calculateRemoveLiquidity(self.balances, amount, self.lpToken.totalSupply()); } function _calculateRemoveLiquidity( uint256[] memory balances, uint256 amount, uint256 totalSupply ) internal pure returns (uint256[] memory) { require(amount <= totalSupply, "exceed total supply"); uint256 numBalances = balances.length; uint256[] memory amounts = new uint256[](numBalances); for (uint256 i; i < numBalances; ) { amounts[i] = (balances[i] * amount) / totalSupply; unchecked { ++i; } } return amounts; } /** * @notice A simple method to calculate prices from deposits or * withdrawals, excluding fees but including slippage. This is * helpful as an input into the various "min" parameters on calls * to fight front-running * * @dev This shouldn't be used outside frontends for user estimates. * * @param self Swap struct to read from * @param amounts an array of token amounts to deposit or withdrawal, * corresponding to pooledTokens. The amount should be in each * pooled token's native precision. If a token charges a fee on transfers, * use the amount that gets transferred after the fee. * @param deposit whether this is a deposit or a withdrawal * @return if deposit was true, total amount of lp token that will be minted and if * deposit was false, total amount of lp token that will be burned */ function calculateTokenAmount( Swap storage self, uint256[] calldata amounts, bool deposit ) internal view returns (uint256) { uint256[] memory balances = self.balances; uint256 numBalances = balances.length; require(amounts.length == numBalances, "invalid length of amounts"); uint256 a = _getAPrecise(self); uint256[] memory multipliers = self.tokenPrecisionMultipliers; uint256 d0 = getD(_xp(balances, multipliers), a); for (uint256 i; i < numBalances; ) { if (deposit) { balances[i] = balances[i] + amounts[i]; } else { balances[i] = balances[i] - amounts[i]; } unchecked { ++i; } } uint256 d1 = getD(_xp(balances, multipliers), a); uint256 totalSupply = self.lpToken.totalSupply(); if (deposit) { return ((d1 - d0) * totalSupply) / d0; } else { return ((d0 - d1) * totalSupply) / d0; } } /** * @notice return accumulated amount of admin fees of the token with given index * @param self Swap struct to read from * @param index Index of the pooled token * @return admin balance in the token's precision */ function getAdminBalance(Swap storage self, uint256 index) internal view returns (uint256) { require(index < self.pooledTokens.length, "index out of range"); return self.adminFees[index]; } /** * @notice internal helper function to calculate fee per token multiplier used in * swap fee calculations * @param swapFee swap fee for the tokens * @param numTokens number of tokens pooled */ function _feePerToken(uint256 swapFee, uint256 numTokens) internal pure returns (uint256) { return (swapFee * numTokens) / ((numTokens - 1) * 4); } /*** STATE MODIFYING FUNCTIONS ***/ /** * @notice swap two tokens in the pool * @param self Swap struct to read from and write to * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dx the amount of tokens the user wants to sell * @param minDy the min amount the user would like to receive, or revert. * @return amount of token user received on swap */ function swap( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy ) internal returns (uint256) { require(!self.disabled, "disabled pool"); { IERC20 tokenFrom = self.pooledTokens[tokenIndexFrom]; require(dx <= tokenFrom.balanceOf(msg.sender), "swap more than you own"); // Reverts for fee on transfer AssetLogic.handleIncomingAsset(address(tokenFrom), dx); } uint256 dy; uint256 dyFee; uint256[] memory balances = self.balances; (dy, dyFee) = _calculateSwap(self, tokenIndexFrom, tokenIndexTo, dx, balances); require(dy >= minDy, "dy < minDy"); uint256 dyAdminFee = (dyFee * self.adminFee) / Constants.FEE_DENOMINATOR / self.tokenPrecisionMultipliers[tokenIndexTo]; self.balances[tokenIndexFrom] = balances[tokenIndexFrom] + dx; self.balances[tokenIndexTo] = balances[tokenIndexTo] - dy - dyAdminFee; if (dyAdminFee != 0) { self.adminFees[tokenIndexTo] = self.adminFees[tokenIndexTo] + dyAdminFee; } AssetLogic.handleOutgoingAsset(address(self.pooledTokens[tokenIndexTo]), msg.sender, dy); emit TokenSwap(self.key, msg.sender, dx, dy, tokenIndexFrom, tokenIndexTo); return dy; } /** * @notice swap two tokens in the pool * @param self Swap struct to read from and write to * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dy the amount of tokens the user wants to buy * @param maxDx the max amount the user would like to send. * @return amount of token user have to transfer on swap */ function swapOut( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dy, uint256 maxDx ) internal returns (uint256) { require(!self.disabled, "disabled pool"); require(dy <= self.balances[tokenIndexTo], ">pool balance"); uint256 dx; uint256 dxFee; uint256[] memory balances = self.balances; (dx, dxFee) = _calculateSwapInv(self, tokenIndexFrom, tokenIndexTo, dy, balances); require(dx <= maxDx, "dx > maxDx"); uint256 dxAdminFee = (dxFee * self.adminFee) / Constants.FEE_DENOMINATOR / self.tokenPrecisionMultipliers[tokenIndexFrom]; self.balances[tokenIndexFrom] = balances[tokenIndexFrom] + dx - dxAdminFee; self.balances[tokenIndexTo] = balances[tokenIndexTo] - dy; if (dxAdminFee != 0) { self.adminFees[tokenIndexFrom] = self.adminFees[tokenIndexFrom] + dxAdminFee; } { IERC20 tokenFrom = self.pooledTokens[tokenIndexFrom]; require(dx <= tokenFrom.balanceOf(msg.sender), "more than you own"); // Reverts for fee on transfer AssetLogic.handleIncomingAsset(address(tokenFrom), dx); } AssetLogic.handleOutgoingAsset(address(self.pooledTokens[tokenIndexTo]), msg.sender, dy); emit TokenSwap(self.key, msg.sender, dx, dy, tokenIndexFrom, tokenIndexTo); return dx; } /** * @notice swap two tokens in the pool internally * @param self Swap struct to read from and write to * @param tokenIndexFrom the token the user wants to sell * @param tokenIndexTo the token the user wants to buy * @param dx the amount of tokens the user wants to sell * @param minDy the min amount the user would like to receive, or revert. * @return amount of token user received on swap */ function swapInternal( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy ) internal returns (uint256) { require(!self.disabled, "disabled pool"); require(dx <= self.balances[tokenIndexFrom], "more than pool balance"); uint256 dy; uint256 dyFee; uint256[] memory balances = self.balances; (dy, dyFee) = _calculateSwap(self, tokenIndexFrom, tokenIndexTo, dx, balances); require(dy >= minDy, "dy < minDy"); uint256 dyAdminFee = (dyFee * self.adminFee) / Constants.FEE_DENOMINATOR / self.tokenPrecisionMultipliers[tokenIndexTo]; self.balances[tokenIndexFrom] = balances[tokenIndexFrom] + dx; self.balances[tokenIndexTo] = balances[tokenIndexTo] - dy - dyAdminFee; if (dyAdminFee != 0) { self.adminFees[tokenIndexTo] = self.adminFees[tokenIndexTo] + dyAdminFee; } emit TokenSwap(self.key, msg.sender, dx, dy, tokenIndexFrom, tokenIndexTo); return dy; } /** * @notice Should get exact amount out of AMM for asset put in */ function swapInternalOut( Swap storage self, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dy, uint256 maxDx ) internal returns (uint256) { require(!self.disabled, "disabled pool"); require(dy <= self.balances[tokenIndexTo], "more than pool balance"); uint256 dx; uint256 dxFee; uint256[] memory balances = self.balances; (dx, dxFee) = _calculateSwapInv(self, tokenIndexFrom, tokenIndexTo, dy, balances); require(dx <= maxDx, "dx > maxDx"); uint256 dxAdminFee = (dxFee * self.adminFee) / Constants.FEE_DENOMINATOR / self.tokenPrecisionMultipliers[tokenIndexFrom]; self.balances[tokenIndexFrom] = balances[tokenIndexFrom] + dx - dxAdminFee; self.balances[tokenIndexTo] = balances[tokenIndexTo] - dy; if (dxAdminFee != 0) { self.adminFees[tokenIndexFrom] = self.adminFees[tokenIndexFrom] + dxAdminFee; } emit TokenSwap(self.key, msg.sender, dx, dy, tokenIndexFrom, tokenIndexTo); return dx; } /** * @notice Add liquidity to the pool * @param self Swap struct to read from and write to * @param amounts the amounts of each token to add, in their native precision * @param minToMint the minimum LP tokens adding this amount of liquidity * should mint, otherwise revert. Handy for front-running mitigation * allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored. * @return amount of LP token user received */ function addLiquidity( Swap storage self, uint256[] memory amounts, uint256 minToMint ) internal returns (uint256) { require(!self.disabled, "disabled pool"); uint256 numTokens = self.pooledTokens.length; require(amounts.length == numTokens, "mismatch pooled tokens"); // current state ManageLiquidityInfo memory v = ManageLiquidityInfo( 0, 0, 0, _getAPrecise(self), self.lpToken, 0, self.balances, self.tokenPrecisionMultipliers ); v.totalSupply = v.lpToken.totalSupply(); if (v.totalSupply != 0) { v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA); } uint256[] memory newBalances = new uint256[](numTokens); for (uint256 i; i < numTokens; ) { require(v.totalSupply != 0 || amounts[i] != 0, "!supply all tokens"); // Transfer tokens first to see if a fee was charged on transfer if (amounts[i] != 0) { IERC20 token = self.pooledTokens[i]; // Reverts for fee on transfer AssetLogic.handleIncomingAsset(address(token), amounts[i]); } newBalances[i] = v.balances[i] + amounts[i]; unchecked { ++i; } } // invariant after change v.d1 = getD(_xp(newBalances, v.multipliers), v.preciseA); require(v.d1 > v.d0, "D should increase"); // updated to reflect fees and calculate the user's LP tokens v.d2 = v.d1; uint256[] memory fees = new uint256[](numTokens); if (v.totalSupply != 0) { uint256 feePerToken = _feePerToken(self.swapFee, numTokens); for (uint256 i; i < numTokens; ) { uint256 idealBalance = (v.d1 * v.balances[i]) / v.d0; fees[i] = (feePerToken * (idealBalance.difference(newBalances[i]))) / Constants.FEE_DENOMINATOR; uint256 adminFee = (fees[i] * self.adminFee) / Constants.FEE_DENOMINATOR; self.balances[i] = newBalances[i] - adminFee; self.adminFees[i] = self.adminFees[i] + adminFee; newBalances[i] = newBalances[i] - fees[i]; unchecked { ++i; } } v.d2 = getD(_xp(newBalances, v.multipliers), v.preciseA); } else { // the initial depositor doesn't pay fees self.balances = newBalances; } uint256 toMint; if (v.totalSupply == 0) { toMint = v.d1; } else { toMint = ((v.d2 - v.d0) * v.totalSupply) / v.d0; } require(toMint >= minToMint, "mint < min"); // mint the user's LP tokens v.lpToken.mint(msg.sender, toMint); emit AddLiquidity(self.key, msg.sender, amounts, fees, v.d1, v.totalSupply + toMint); return toMint; } /** * @notice Burn LP tokens to remove liquidity from the pool. * @dev Liquidity can always be removed, even when the pool is paused. * @param self Swap struct to read from and write to * @param amount the amount of LP tokens to burn * @param minAmounts the minimum amounts of each token in the pool * acceptable for this burn. Useful as a front-running mitigation * @return amounts of tokens the user received */ function removeLiquidity( Swap storage self, uint256 amount, uint256[] calldata minAmounts ) internal returns (uint256[] memory) { LPToken lpToken = self.lpToken; require(amount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf"); uint256 numTokens = self.pooledTokens.length; require(minAmounts.length == numTokens, "mismatch poolTokens"); uint256[] memory balances = self.balances; uint256 totalSupply = lpToken.totalSupply(); uint256[] memory amounts = _calculateRemoveLiquidity(balances, amount, totalSupply); uint256 numAmounts = amounts.length; for (uint256 i; i < numAmounts; ) { require(amounts[i] >= minAmounts[i], "amounts[i] < minAmounts[i]"); self.balances[i] = balances[i] - amounts[i]; AssetLogic.handleOutgoingAsset(address(self.pooledTokens[i]), msg.sender, amounts[i]); unchecked { ++i; } } lpToken.burnFrom(msg.sender, amount); emit RemoveLiquidity(self.key, msg.sender, amounts, totalSupply - amount); return amounts; } /** * @notice Remove liquidity from the pool all in one token. * @param self Swap struct to read from and write to * @param tokenAmount the amount of the lp tokens to burn * @param tokenIndex the index of the token you want to receive * @param minAmount the minimum amount to withdraw, otherwise revert * @return amount chosen token that user received */ function removeLiquidityOneToken( Swap storage self, uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount ) internal returns (uint256) { LPToken lpToken = self.lpToken; require(tokenAmount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf"); uint256 numTokens = self.pooledTokens.length; require(tokenIndex < numTokens, "not found"); uint256 totalSupply = lpToken.totalSupply(); (uint256 dy, uint256 dyFee) = _calculateWithdrawOneToken(self, tokenAmount, tokenIndex, totalSupply); require(dy >= minAmount, "dy < minAmount"); uint256 adminFee = (dyFee * self.adminFee) / Constants.FEE_DENOMINATOR; self.balances[tokenIndex] = self.balances[tokenIndex] - (dy + adminFee); if (adminFee != 0) { self.adminFees[tokenIndex] = self.adminFees[tokenIndex] + adminFee; } lpToken.burnFrom(msg.sender, tokenAmount); AssetLogic.handleOutgoingAsset(address(self.pooledTokens[tokenIndex]), msg.sender, dy); emit RemoveLiquidityOne(self.key, msg.sender, tokenAmount, totalSupply, tokenIndex, dy); return dy; } /** * @notice Remove liquidity from the pool, weighted differently than the * pool's current balances. * * @param self Swap struct to read from and write to * @param amounts how much of each token to withdraw * @param maxBurnAmount the max LP token provider is willing to pay to * remove liquidity. Useful as a front-running mitigation. * @return actual amount of LP tokens burned in the withdrawal */ function removeLiquidityImbalance( Swap storage self, uint256[] memory amounts, uint256 maxBurnAmount ) internal returns (uint256) { ManageLiquidityInfo memory v = ManageLiquidityInfo( 0, 0, 0, _getAPrecise(self), self.lpToken, 0, self.balances, self.tokenPrecisionMultipliers ); v.totalSupply = v.lpToken.totalSupply(); uint256 numTokens = self.pooledTokens.length; uint256 numAmounts = amounts.length; require(numAmounts == numTokens, "mismatch pool tokens"); require(maxBurnAmount <= v.lpToken.balanceOf(msg.sender) && maxBurnAmount != 0, ">LP.balanceOf"); uint256 feePerToken = _feePerToken(self.swapFee, numTokens); uint256[] memory fees = new uint256[](numTokens); { uint256[] memory balances1 = new uint256[](numTokens); v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA); for (uint256 i; i < numTokens; ) { require(v.balances[i] >= amounts[i], "withdraw more than available"); unchecked { balances1[i] = v.balances[i] - amounts[i]; ++i; } } v.d1 = getD(_xp(balances1, v.multipliers), v.preciseA); for (uint256 i; i < numTokens; ) { { uint256 idealBalance = (v.d1 * v.balances[i]) / v.d0; uint256 difference = idealBalance.difference(balances1[i]); fees[i] = (feePerToken * difference) / Constants.FEE_DENOMINATOR; } uint256 adminFee = (fees[i] * self.adminFee) / Constants.FEE_DENOMINATOR; self.balances[i] = balances1[i] - adminFee; self.adminFees[i] = self.adminFees[i] + adminFee; balances1[i] = balances1[i] - fees[i]; unchecked { ++i; } } v.d2 = getD(_xp(balances1, v.multipliers), v.preciseA); } uint256 tokenAmount = ((v.d0 - v.d2) * v.totalSupply) / v.d0; require(tokenAmount != 0, "!zero amount"); tokenAmount = tokenAmount + 1; require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount"); v.lpToken.burnFrom(msg.sender, tokenAmount); for (uint256 i; i < numTokens; ) { AssetLogic.handleOutgoingAsset(address(self.pooledTokens[i]), msg.sender, amounts[i]); unchecked { ++i; } } emit RemoveLiquidityImbalance(self.key, msg.sender, amounts, fees, v.d1, v.totalSupply - tokenAmount); return tokenAmount; } /** * @notice withdraw all admin fees to a given address * @param self Swap struct to withdraw fees from * @param to Address to send the fees to */ function withdrawAdminFees(Swap storage self, address to) internal { uint256 numTokens = self.pooledTokens.length; for (uint256 i; i < numTokens; ) { IERC20 token = self.pooledTokens[i]; uint256 balance = self.adminFees[i]; if (balance != 0) { delete self.adminFees[i]; AssetLogic.handleOutgoingAsset(address(token), to, balance); } unchecked { ++i; } } } /** * @notice Sets the admin fee * @dev adminFee cannot be higher than 100% of the swap fee * @param self Swap struct to update * @param newAdminFee new admin fee to be applied on future transactions */ function setAdminFee(Swap storage self, uint256 newAdminFee) internal { require(newAdminFee < Constants.MAX_ADMIN_FEE + 1, "too high"); self.adminFee = newAdminFee; emit NewAdminFee(self.key, newAdminFee); } /** * @notice update the swap fee * @dev fee cannot be higher than 1% of each swap * @param self Swap struct to update * @param newSwapFee new swap fee to be applied on future transactions */ function setSwapFee(Swap storage self, uint256 newSwapFee) internal { require(newSwapFee < Constants.MAX_SWAP_FEE + 1, "too high"); self.swapFee = newSwapFee; emit NewSwapFee(self.key, newSwapFee); } /** * @notice Check if this stableswap pool exists and is valid (i.e. has been * initialized and tokens have been added). * @return bool true if this stableswap pool is valid, false if not. */ function exists(Swap storage self) internal view returns (bool) { return !self.disabled && self.pooledTokens.length != 0; } }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; // ============= Structs ============= // Tokens are identified by a TokenId: // domain - 4 byte chain ID of the chain from which the token originates // id - 32 byte identifier of the token address on the origin chain, in that chain's address format struct TokenId { uint32 domain; bytes32 id; }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; import {IOutbox} from "./IOutbox.sol"; /** * @notice Each router extends the `XAppConnectionClient` contract. This contract * allows an admin to call `setXAppConnectionManager` to update the underlying * pointers to the messaging inboxes (Replicas) and outboxes (Homes). * * @dev This interface only contains the functions needed for the `XAppConnectionClient` * will interface with. */ interface IConnectorManager { /** * @notice Get the local inbox contract from the xAppConnectionManager * @return The local inbox contract * @dev The local inbox contract is a SpokeConnector with AMBs, and a * Home contract with nomad */ function home() external view returns (IOutbox); /** * @notice Determine whether _potentialReplica is an enrolled Replica from the xAppConnectionManager * @return True if _potentialReplica is an enrolled Replica */ function isReplica(address _potentialReplica) external view returns (bool); /** * @notice Get the local domain from the xAppConnectionManager * @return The local domain */ function localDomain() external view returns (uint32); }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; /** * @notice Interface for all contracts sending messages originating on their * current domain. * * @dev These are the Home.sol interface methods used by the `Router` * and exposed via `home()` on the `XAppConnectionClient` */ interface IOutbox { /** * @notice Emitted when a new message is added to an outbound message merkle root * @param leafIndex Index of message's leaf in merkle tree * @param destinationAndNonce Destination and destination-specific * nonce combined in single field ((destination << 32) & nonce) * @param messageHash Hash of message; the leaf inserted to the Merkle tree for the message * @param committedRoot the latest notarized root submitted in the last signed Update * @param message Raw bytes of message */ event Dispatch( bytes32 indexed messageHash, uint256 indexed leafIndex, uint64 indexed destinationAndNonce, bytes32 committedRoot, bytes message ); /** * @notice Dispatch the message it to the destination domain & recipient * @dev Format the message, insert its hash into Merkle tree, * enqueue the new Merkle root, and emit `Dispatch` event with message information. * @param _destinationDomain Domain of destination chain * @param _recipientAddress Address of recipient on destination chain as bytes32 * @param _messageBody Raw bytes content of message * @return bytes32 The leaf added to the tree */ function dispatch( uint32 _destinationDomain, bytes32 _recipientAddress, bytes memory _messageBody ) external returns (bytes32, bytes memory); /** * @notice domain => next available nonce for the domain. */ function nonces(uint32 domain) external returns (uint32); }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; // Taken from: https://github.com/nomad-xyz/ExcessivelySafeCall // NOTE: There is a difference between npm latest and github main versions // where the latest github version allows you to specify an ether value. library ExcessivelySafeCall { uint256 constant LOW_28_MASK = 0x00000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff; /// @notice Use when you _really_ really _really_ don't trust the called /// contract. This prevents the called contract from causing reversion of /// the caller in as many ways as we can. /// @dev The main difference between this and a solidity low-level call is /// that we limit the number of bytes that the callee can cause to be /// copied to caller memory. This prevents stupid things like malicious /// contracts returning 10,000,000 bytes causing a local OOG when copying /// to memory. /// @param _target The address to call /// @param _gas The amount of gas to forward to the remote contract /// @param _value The value in wei to send to the remote contract /// @param _maxCopy The maximum number of bytes of returndata to copy /// to memory. /// @param _calldata The data to send to the remote contract /// @return success and returndata, as `.call()`. Returndata is capped to /// `_maxCopy` bytes. function excessivelySafeCall( address _target, uint256 _gas, uint256 _value, uint16 _maxCopy, bytes memory _calldata ) internal returns (bool, bytes memory) { // set up for assembly call uint256 _toCopy; bool _success; bytes memory _returnData = new bytes(_maxCopy); // dispatch message to recipient // by assembly calling "handle" function // we call via assembly to avoid memcopying a very large returndata // returned by a malicious contract assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value add(_calldata, 0x20), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) // limit our copy to 256 bytes _toCopy := returndatasize() if gt(_toCopy, _maxCopy) { _toCopy := _maxCopy } // Store the length of the copied bytes mstore(_returnData, _toCopy) // copy the bytes from returndata[0:_toCopy] returndatacopy(add(_returnData, 0x20), 0, _toCopy) } return (_success, _returnData); } /// @notice Use when you _really_ really _really_ don't trust the called /// contract. This prevents the called contract from causing reversion of /// the caller in as many ways as we can. /// @dev The main difference between this and a solidity low-level call is /// that we limit the number of bytes that the callee can cause to be /// copied to caller memory. This prevents stupid things like malicious /// contracts returning 10,000,000 bytes causing a local OOG when copying /// to memory. /// @param _target The address to call /// @param _gas The amount of gas to forward to the remote contract /// @param _maxCopy The maximum number of bytes of returndata to copy /// to memory. /// @param _calldata The data to send to the remote contract /// @return success and returndata, as `.call()`. Returndata is capped to /// `_maxCopy` bytes. function excessivelySafeStaticCall( address _target, uint256 _gas, uint16 _maxCopy, bytes memory _calldata ) internal view returns (bool, bytes memory) { // set up for assembly call uint256 _toCopy; bool _success; bytes memory _returnData = new bytes(_maxCopy); // dispatch message to recipient // by assembly calling "handle" function // we call via assembly to avoid memcopying a very large returndata // returned by a malicious contract assembly { _success := staticcall( _gas, // gas _target, // recipient add(_calldata, 0x20), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) // limit our copy to 256 bytes _toCopy := returndatasize() if gt(_toCopy, _maxCopy) { _toCopy := _maxCopy } // Store the length of the copied bytes mstore(_returnData, _toCopy) // copy the bytes from returndata[0:_toCopy] returndatacopy(add(_returnData, 0x20), 0, _toCopy) } return (_success, _returnData); } /** * @notice Swaps function selectors in encoded contract calls * @dev Allows reuse of encoded calldata for functions with identical * argument types but different names. It simply swaps out the first 4 bytes * for the new selector. This function modifies memory in place, and should * only be used with caution. * @param _newSelector The new 4-byte selector * @param _buf The encoded contract args */ function swapSelector(bytes4 _newSelector, bytes memory _buf) internal pure { require(_buf.length > 4 - 1); uint256 _mask = LOW_28_MASK; assembly { // load the first word of let _word := mload(add(_buf, 0x20)) // mask out the top 4 bytes // /x _word := and(_word, _mask) _word := or(_newSelector, _word) mstore(add(_buf, 0x20), _word) } } }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; import {TypedMemView} from "./TypedMemView.sol"; library TypeCasts { using TypedMemView for bytes; using TypedMemView for bytes29; // alignment preserving cast function addressToBytes32(address _addr) internal pure returns (bytes32) { return bytes32(uint256(uint160(_addr))); } // alignment preserving cast function bytes32ToAddress(bytes32 _buf) internal pure returns (address) { return address(uint160(uint256(_buf))); } }
// SPDX-License-Identifier: MIT OR Apache-2.0 pragma solidity 0.8.17; library TypedMemView { // Why does this exist? // the solidity `bytes memory` type has a few weaknesses. // 1. You can't index ranges effectively // 2. You can't slice without copying // 3. The underlying data may represent any type // 4. Solidity never deallocates memory, and memory costs grow // superlinearly // By using a memory view instead of a `bytes memory` we get the following // advantages: // 1. Slices are done on the stack, by manipulating the pointer // 2. We can index arbitrary ranges and quickly convert them to stack types // 3. We can insert type info into the pointer, and typecheck at runtime // This makes `TypedMemView` a useful tool for efficient zero-copy // algorithms. // Why bytes29? // We want to avoid confusion between views, digests, and other common // types so we chose a large and uncommonly used odd number of bytes // // Note that while bytes are left-aligned in a word, integers and addresses // are right-aligned. This means when working in assembly we have to // account for the 3 unused bytes on the righthand side // // First 5 bytes are a type flag. // - ff_ffff_fffe is reserved for unknown type. // - ff_ffff_ffff is reserved for invalid types/errors. // next 12 are memory address // next 12 are len // bottom 3 bytes are empty // Assumptions: // - non-modification of memory. // - No Solidity updates // - - wrt free mem point // - - wrt bytes representation in memory // - - wrt memory addressing in general // Usage: // - create type constants // - use `assertType` for runtime type assertions // - - unfortunately we can't do this at compile time yet :( // - recommended: implement modifiers that perform type checking // - - e.g. // - - `uint40 constant MY_TYPE = 3;` // - - ` modifer onlyMyType(bytes29 myView) { myView.assertType(MY_TYPE); }` // - instantiate a typed view from a bytearray using `ref` // - use `index` to inspect the contents of the view // - use `slice` to create smaller views into the same memory // - - `slice` can increase the offset // - - `slice can decrease the length` // - - must specify the output type of `slice` // - - `slice` will return a null view if you try to overrun // - - make sure to explicitly check for this with `notNull` or `assertType` // - use `equal` for typed comparisons. // The null view bytes29 public constant NULL = hex"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"; uint256 constant LOW_12_MASK = 0xffffffffffffffffffffffff; uint256 constant TWENTY_SEVEN_BYTES = 8 * 27; uint256 private constant _27_BYTES_IN_BITS = 8 * 27; // <--- also used this named constant where ever 216 is used. uint256 private constant LOW_27_BYTES_MASK = 0xffffffffffffffffffffffffffffffffffffffffffffffffffffff; // (1 << _27_BYTES_IN_BITS) - 1; // ========== Custom Errors =========== error TypedMemView__assertType_typeAssertionFailed(uint256 actual, uint256 expected); error TypedMemView__index_overrun(uint256 loc, uint256 len, uint256 index, uint256 slice); error TypedMemView__index_indexMoreThan32Bytes(); error TypedMemView__unsafeCopyTo_nullPointer(); error TypedMemView__unsafeCopyTo_invalidPointer(); error TypedMemView__unsafeCopyTo_identityOOG(); error TypedMemView__assertValid_validityAssertionFailed(); /** * @notice Changes the endianness of a uint256. * @dev https://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel * @param _b The unsigned integer to reverse * @return v - The reversed value */ function reverseUint256(uint256 _b) internal pure returns (uint256 v) { v = _b; // swap bytes v = ((v >> 8) & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) | ((v & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) << 8); // swap 2-byte long pairs v = ((v >> 16) & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) | ((v & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) << 16); // swap 4-byte long pairs v = ((v >> 32) & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) | ((v & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) << 32); // swap 8-byte long pairs v = ((v >> 64) & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) | ((v & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) << 64); // swap 16-byte long pairs v = (v >> 128) | (v << 128); } /** * @notice Create a mask with the highest `_len` bits set. * @param _len The length * @return mask - The mask */ function leftMask(uint8 _len) private pure returns (uint256 mask) { // ugly. redo without assembly? assembly { // solhint-disable-previous-line no-inline-assembly mask := sar(sub(_len, 1), 0x8000000000000000000000000000000000000000000000000000000000000000) } } /** * @notice Return the null view. * @return bytes29 - The null view */ function nullView() internal pure returns (bytes29) { return NULL; } /** * @notice Check if the view is null. * @return bool - True if the view is null */ function isNull(bytes29 memView) internal pure returns (bool) { return memView == NULL; } /** * @notice Check if the view is not null. * @return bool - True if the view is not null */ function notNull(bytes29 memView) internal pure returns (bool) { return !isNull(memView); } /** * @notice Check if the view is of a invalid type and points to a valid location * in memory. * @dev We perform this check by examining solidity's unallocated memory * pointer and ensuring that the view's upper bound is less than that. * @param memView The view * @return ret - True if the view is invalid */ function isNotValid(bytes29 memView) internal pure returns (bool ret) { if (typeOf(memView) == 0xffffffffff) { return true; } uint256 _end = end(memView); assembly { // solhint-disable-previous-line no-inline-assembly ret := gt(_end, mload(0x40)) } } /** * @notice Require that a typed memory view be valid. * @dev Returns the view for easy chaining. * @param memView The view * @return bytes29 - The validated view */ function assertValid(bytes29 memView) internal pure returns (bytes29) { if (isNotValid(memView)) revert TypedMemView__assertValid_validityAssertionFailed(); return memView; } /** * @notice Return true if the memview is of the expected type. Otherwise false. * @param memView The view * @param _expected The expected type * @return bool - True if the memview is of the expected type */ function isType(bytes29 memView, uint40 _expected) internal pure returns (bool) { return typeOf(memView) == _expected; } /** * @notice Require that a typed memory view has a specific type. * @dev Returns the view for easy chaining. * @param memView The view * @param _expected The expected type * @return bytes29 - The view with validated type */ function assertType(bytes29 memView, uint40 _expected) internal pure returns (bytes29) { if (!isType(memView, _expected)) { revert TypedMemView__assertType_typeAssertionFailed(uint256(typeOf(memView)), uint256(_expected)); } return memView; } /** * @notice Return an identical view with a different type. * @param memView The view * @param _newType The new type * @return newView - The new view with the specified type */ function castTo(bytes29 memView, uint40 _newType) internal pure returns (bytes29 newView) { // then | in the new type assembly { // solhint-disable-previous-line no-inline-assembly // shift off the top 5 bytes newView := or(and(memView, LOW_27_BYTES_MASK), shl(_27_BYTES_IN_BITS, _newType)) } } /** * @notice Unsafe raw pointer construction. This should generally not be called * directly. Prefer `ref` wherever possible. * @dev Unsafe raw pointer construction. This should generally not be called * directly. Prefer `ref` wherever possible. * @param _type The type * @param _loc The memory address * @param _len The length * @return newView - The new view with the specified type, location and length */ function unsafeBuildUnchecked( uint256 _type, uint256 _loc, uint256 _len ) private pure returns (bytes29 newView) { uint256 _uint96Bits = 96; uint256 _emptyBits = 24; // Cast params to ensure input is of correct length uint96 len_ = uint96(_len); uint96 loc_ = uint96(_loc); require(len_ == _len && loc_ == _loc, "!truncated"); assembly { // solium-disable-previous-line security/no-inline-assembly newView := shl(_uint96Bits, _type) // insert type newView := shl(_uint96Bits, or(newView, loc_)) // insert loc newView := shl(_emptyBits, or(newView, len_)) // empty bottom 3 bytes } } /** * @notice Instantiate a new memory view. This should generally not be called * directly. Prefer `ref` wherever possible. * @dev Instantiate a new memory view. This should generally not be called * directly. Prefer `ref` wherever possible. * @param _type The type * @param _loc The memory address * @param _len The length * @return newView - The new view with the specified type, location and length */ function build( uint256 _type, uint256 _loc, uint256 _len ) internal pure returns (bytes29 newView) { uint256 _end = _loc + _len; assembly { // solhint-disable-previous-line no-inline-assembly if gt(_end, mload(0x40)) { _end := 0 } } if (_end == 0) { return NULL; } newView = unsafeBuildUnchecked(_type, _loc, _len); } /** * @notice Instantiate a memory view from a byte array. * @dev Note that due to Solidity memory representation, it is not possible to * implement a deref, as the `bytes` type stores its len in memory. * @param arr The byte array * @param newType The type * @return bytes29 - The memory view */ function ref(bytes memory arr, uint40 newType) internal pure returns (bytes29) { uint256 _len = arr.length; uint256 _loc; assembly { // solhint-disable-previous-line no-inline-assembly _loc := add(arr, 0x20) // our view is of the data, not the struct } return build(newType, _loc, _len); } /** * @notice Return the associated type information. * @param memView The memory view * @return _type - The type associated with the view */ function typeOf(bytes29 memView) internal pure returns (uint40 _type) { assembly { // solhint-disable-previous-line no-inline-assembly // 216 == 256 - 40 _type := shr(_27_BYTES_IN_BITS, memView) // shift out lower 24 bytes } } /** * @notice Return the memory address of the underlying bytes. * @param memView The view * @return _loc - The memory address */ function loc(bytes29 memView) internal pure returns (uint96 _loc) { uint256 _mask = LOW_12_MASK; // assembly can't use globals assembly { // solhint-disable-previous-line no-inline-assembly // 120 bits = 12 bytes (the encoded loc) + 3 bytes (empty low space) _loc := and(shr(120, memView), _mask) } } /** * @notice The number of memory words this memory view occupies, rounded up. * @param memView The view * @return uint256 - The number of memory words */ function words(bytes29 memView) internal pure returns (uint256) { return (uint256(len(memView)) + 31) / 32; } /** * @notice The in-memory footprint of a fresh copy of the view. * @param memView The view * @return uint256 - The in-memory footprint of a fresh copy of the view. */ function footprint(bytes29 memView) internal pure returns (uint256) { return words(memView) * 32; } /** * @notice The number of bytes of the view. * @param memView The view * @return _len - The length of the view */ function len(bytes29 memView) internal pure returns (uint96 _len) { uint256 _mask = LOW_12_MASK; // assembly can't use globals assembly { // solhint-disable-previous-line no-inline-assembly _len := and(shr(24, memView), _mask) } } /** * @notice Returns the endpoint of `memView`. * @param memView The view * @return uint256 - The endpoint of `memView` */ function end(bytes29 memView) internal pure returns (uint256) { unchecked { return loc(memView) + len(memView); } } /** * @notice Safe slicing without memory modification. * @param memView The view * @param _index The start index * @param _len The length * @param newType The new type * @return bytes29 - The new view */ function slice( bytes29 memView, uint256 _index, uint256 _len, uint40 newType ) internal pure returns (bytes29) { uint256 _loc = loc(memView); // Ensure it doesn't overrun the view if (_loc + _index + _len > end(memView)) { return NULL; } _loc = _loc + _index; return build(newType, _loc, _len); } /** * @notice Shortcut to `slice`. Gets a view representing the first `_len` bytes. * @param memView The view * @param _len The length * @param newType The new type * @return bytes29 - The new view */ function prefix( bytes29 memView, uint256 _len, uint40 newType ) internal pure returns (bytes29) { return slice(memView, 0, _len, newType); } /** * @notice Shortcut to `slice`. Gets a view representing the last `_len` byte. * @param memView The view * @param _len The length * @param newType The new type * @return bytes29 - The new view */ function postfix( bytes29 memView, uint256 _len, uint40 newType ) internal pure returns (bytes29) { return slice(memView, uint256(len(memView)) - _len, _len, newType); } /** * @notice Load up to 32 bytes from the view onto the stack. * @dev Returns a bytes32 with only the `_bytes` highest bytes set. * This can be immediately cast to a smaller fixed-length byte array. * To automatically cast to an integer, use `indexUint`. * @param memView The view * @param _index The index * @param _bytes The bytes * @return result - The 32 byte result */ function index( bytes29 memView, uint256 _index, uint8 _bytes ) internal pure returns (bytes32 result) { if (_bytes == 0) { return bytes32(0); } if (_index + _bytes > len(memView)) { // "TypedMemView/index - Overran the view. Slice is at {loc} with length {len}. Attempted to index at offset {index} with length {slice}, revert TypedMemView__index_overrun(loc(memView), len(memView), _index, uint256(_bytes)); } if (_bytes > 32) revert TypedMemView__index_indexMoreThan32Bytes(); uint8 bitLength; unchecked { bitLength = _bytes * 8; } uint256 _loc = loc(memView); uint256 _mask = leftMask(bitLength); assembly { // solhint-disable-previous-line no-inline-assembly result := and(mload(add(_loc, _index)), _mask) } } /** * @notice Parse an unsigned integer from the view at `_index`. * @dev Requires that the view have >= `_bytes` bytes following that index. * @param memView The view * @param _index The index * @param _bytes The bytes * @return result - The unsigned integer */ function indexUint( bytes29 memView, uint256 _index, uint8 _bytes ) internal pure returns (uint256 result) { return uint256(index(memView, _index, _bytes)) >> ((32 - _bytes) * 8); } /** * @notice Parse an unsigned integer from LE bytes. * @param memView The view * @param _index The index * @param _bytes The bytes * @return result - The unsigned integer */ function indexLEUint( bytes29 memView, uint256 _index, uint8 _bytes ) internal pure returns (uint256 result) { return reverseUint256(uint256(index(memView, _index, _bytes))); } /** * @notice Parse an address from the view at `_index`. Requires that the view have >= 20 bytes * following that index. * @param memView The view * @param _index The index * @return address - The address */ function indexAddress(bytes29 memView, uint256 _index) internal pure returns (address) { return address(uint160(indexUint(memView, _index, 20))); } /** * @notice Return the keccak256 hash of the underlying memory * @param memView The view * @return digest - The keccak256 hash of the underlying memory */ function keccak(bytes29 memView) internal pure returns (bytes32 digest) { uint256 _loc = loc(memView); uint256 _len = len(memView); assembly { // solhint-disable-previous-line no-inline-assembly digest := keccak256(_loc, _len) } } /** * @notice Return true if the underlying memory is equal. Else false. * @param left The first view * @param right The second view * @return bool - True if the underlying memory is equal */ function untypedEqual(bytes29 left, bytes29 right) internal pure returns (bool) { return (loc(left) == loc(right) && len(left) == len(right)) || keccak(left) == keccak(right); } /** * @notice Return false if the underlying memory is equal. Else true. * @param left The first view * @param right The second view * @return bool - False if the underlying memory is equal */ function untypedNotEqual(bytes29 left, bytes29 right) internal pure returns (bool) { return !untypedEqual(left, right); } /** * @notice Compares type equality. * @dev Shortcuts if the pointers are identical, otherwise compares type and digest. * @param left The first view * @param right The second view * @return bool - True if the types are the same */ function equal(bytes29 left, bytes29 right) internal pure returns (bool) { return left == right || (typeOf(left) == typeOf(right) && keccak(left) == keccak(right)); } /** * @notice Compares type inequality. * @dev Shortcuts if the pointers are identical, otherwise compares type and digest. * @param left The first view * @param right The second view * @return bool - True if the types are not the same */ function notEqual(bytes29 left, bytes29 right) internal pure returns (bool) { return !equal(left, right); } /** * @notice Copy the view to a location, return an unsafe memory reference * @dev Super Dangerous direct memory access. * * This reference can be overwritten if anything else modifies memory (!!!). * As such it MUST be consumed IMMEDIATELY. * This function is private to prevent unsafe usage by callers. * @param memView The view * @param _newLoc The new location * @return written - the unsafe memory reference */ function unsafeCopyTo(bytes29 memView, uint256 _newLoc) private view returns (bytes29 written) { if (isNull(memView)) revert TypedMemView__unsafeCopyTo_nullPointer(); if (isNotValid(memView)) revert TypedMemView__unsafeCopyTo_invalidPointer(); uint256 _len = len(memView); uint256 _oldLoc = loc(memView); uint256 ptr; bool res; assembly { // solhint-disable-previous-line no-inline-assembly ptr := mload(0x40) // revert if we're writing in occupied memory if gt(ptr, _newLoc) { revert(0x60, 0x20) // empty revert message } // use the identity precompile to copy // guaranteed not to fail, so pop the success res := staticcall(gas(), 4, _oldLoc, _len, _newLoc, _len) } if (!res) revert TypedMemView__unsafeCopyTo_identityOOG(); written = unsafeBuildUnchecked(typeOf(memView), _newLoc, _len); } /** * @notice Copies the referenced memory to a new loc in memory, returning a `bytes` pointing to * the new memory * @dev Shortcuts if the pointers are identical, otherwise compares type and digest. * @param memView The view * @return ret - The view pointing to the new memory */ function clone(bytes29 memView) internal view returns (bytes memory ret) { uint256 ptr; uint256 _len = len(memView); assembly { // solhint-disable-previous-line no-inline-assembly ptr := mload(0x40) // load unused memory pointer ret := ptr } unchecked { unsafeCopyTo(memView, ptr + 0x20); } assembly { // solhint-disable-previous-line no-inline-assembly mstore(0x40, add(add(ptr, _len), 0x20)) // write new unused pointer mstore(ptr, _len) // write len of new array (in bytes) } } /** * @notice Join the views in memory, return an unsafe reference to the memory. * @dev Super Dangerous direct memory access. * * This reference can be overwritten if anything else modifies memory (!!!). * As such it MUST be consumed IMMEDIATELY. * This function is private to prevent unsafe usage by callers. * @param memViews The views * @return unsafeView - The conjoined view pointing to the new memory */ function unsafeJoin(bytes29[] memory memViews, uint256 _location) private view returns (bytes29 unsafeView) { assembly { // solhint-disable-previous-line no-inline-assembly let ptr := mload(0x40) // revert if we're writing in occupied memory if gt(ptr, _location) { revert(0x60, 0x20) // empty revert message } } uint256 _offset = 0; uint256 _len = memViews.length; for (uint256 i = 0; i < _len; ) { bytes29 memView = memViews[i]; unchecked { unsafeCopyTo(memView, _location + _offset); _offset += len(memView); ++i; } } unsafeView = unsafeBuildUnchecked(0, _location, _offset); } /** * @notice Produce the keccak256 digest of the concatenated contents of multiple views. * @param memViews The views * @return bytes32 - The keccak256 digest */ function joinKeccak(bytes29[] memory memViews) internal view returns (bytes32) { uint256 ptr; assembly { // solhint-disable-previous-line no-inline-assembly ptr := mload(0x40) // load unused memory pointer } return keccak(unsafeJoin(memViews, ptr)); } /** * @notice copies all views, joins them into a new bytearray. * @param memViews The views * @return ret - The new byte array */ function join(bytes29[] memory memViews) internal view returns (bytes memory ret) { uint256 ptr; assembly { // solhint-disable-previous-line no-inline-assembly ptr := mload(0x40) // load unused memory pointer } bytes29 _newView; unchecked { _newView = unsafeJoin(memViews, ptr + 0x20); } uint256 _written = len(_newView); uint256 _footprint = footprint(_newView); assembly { // solhint-disable-previous-line no-inline-assembly // store the legnth mstore(ptr, _written) // new pointer is old + 0x20 + the footprint of the body mstore(0x40, add(add(ptr, _footprint), 0x20)) ret := ptr } } }
{ "evmVersion": "london", "libraries": {}, "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 200 }, "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
[{"inputs":[],"name":"AssetLogic__getConfig_notRegistered","type":"error"},{"inputs":[],"name":"AssetLogic__getTokenIndexFromStableSwapPool_notExist","type":"error"},{"inputs":[],"name":"AssetLogic__handleIncomingAsset_feeOnTransferNotSupported","type":"error"},{"inputs":[],"name":"AssetLogic__handleIncomingAsset_nativeAssetNotSupported","type":"error"},{"inputs":[],"name":"AssetLogic__handleOutgoingAsset_notNative","type":"error"},{"inputs":[],"name":"BaseConnextFacet__getAdoptedAsset_assetNotFound","type":"error"},{"inputs":[],"name":"BaseConnextFacet__getApprovedCanonicalId_notAllowlisted","type":"error"},{"inputs":[],"name":"BaseConnextFacet__nonReentrant_reentrantCall","type":"error"},{"inputs":[],"name":"BaseConnextFacet__nonXCallReentrant_reentrantCall","type":"error"},{"inputs":[],"name":"BaseConnextFacet__onlyOwnerOrAdmin_notOwnerOrAdmin","type":"error"},{"inputs":[],"name":"BaseConnextFacet__onlyOwnerOrRouter_notOwnerOrRouter","type":"error"},{"inputs":[],"name":"BaseConnextFacet__onlyOwnerOrWatcher_notOwnerOrWatcher","type":"error"},{"inputs":[],"name":"BaseConnextFacet__onlyOwner_notOwner","type":"error"},{"inputs":[],"name":"BaseConnextFacet__onlyProposed_notProposedOwner","type":"error"},{"inputs":[],"name":"BaseConnextFacet__whenNotPaused_paused","type":"error"},{"inputs":[],"name":"BridgeFacet__addRemote_invalidDomain","type":"error"},{"inputs":[],"name":"BridgeFacet__addRemote_invalidRouter","type":"error"},{"inputs":[],"name":"BridgeFacet__addSequencer_alreadyApproved","type":"error"},{"inputs":[],"name":"BridgeFacet__addSequencer_invalidSequencer","type":"error"},{"inputs":[],"name":"BridgeFacet__bumpTransfer_noRelayerVault","type":"error"},{"inputs":[],"name":"BridgeFacet__bumpTransfer_valueIsZero","type":"error"},{"inputs":[],"name":"BridgeFacet__excecute_insufficientGas","type":"error"},{"inputs":[],"name":"BridgeFacet__executePortalTransfer_insufficientAmountWithdrawn","type":"error"},{"inputs":[],"name":"BridgeFacet__execute_badFastLiquidityStatus","type":"error"},{"inputs":[],"name":"BridgeFacet__execute_externalCallFailed","type":"error"},{"inputs":[],"name":"BridgeFacet__execute_invalidRouterSignature","type":"error"},{"inputs":[],"name":"BridgeFacet__execute_invalidSequencerSignature","type":"error"},{"inputs":[],"name":"BridgeFacet__execute_maxRoutersExceeded","type":"error"},{"inputs":[],"name":"BridgeFacet__execute_notApprovedForPortals","type":"error"},{"inputs":[],"name":"BridgeFacet__execute_notReconciled","type":"error"},{"inputs":[],"name":"BridgeFacet__execute_notSupportedRouter","type":"error"},{"inputs":[],"name":"BridgeFacet__execute_notSupportedSequencer","type":"error"},{"inputs":[],"name":"BridgeFacet__execute_unapprovedSender","type":"error"},{"inputs":[],"name":"BridgeFacet__execute_wrongDomain","type":"error"},{"inputs":[],"name":"BridgeFacet__forceReceiveLocal_notDestination","type":"error"},{"inputs":[],"name":"BridgeFacet__forceUpdateSlippage_invalidSlippage","type":"error"},{"inputs":[],"name":"BridgeFacet__forceUpdateSlippage_notDestination","type":"error"},{"inputs":[],"name":"BridgeFacet__mustHaveRemote_destinationNotSupported","type":"error"},{"inputs":[],"name":"BridgeFacet__onlyDelegate_notDelegate","type":"error"},{"inputs":[],"name":"BridgeFacet__removeSequencer_notApproved","type":"error"},{"inputs":[],"name":"BridgeFacet__setXAppConnectionManager_domainsDontMatch","type":"error"},{"inputs":[],"name":"BridgeFacet__xcall_capReached","type":"error"},{"inputs":[],"name":"BridgeFacet__xcall_emptyTo","type":"error"},{"inputs":[],"name":"BridgeFacet__xcall_invalidSlippage","type":"error"},{"inputs":[],"name":"BridgeFacet__xcall_nativeAssetNotSupported","type":"error"},{"inputs":[],"name":"BridgeFacet_xcall__emptyLocalAsset","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"transferId","type":"bytes32"},{"indexed":true,"internalType":"address","name":"router","type":"address"},{"indexed":false,"internalType":"address","name":"asset","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"AavePortalMintUnbacked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"transferId","type":"bytes32"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"address","name":"asset","type":"address"},{"components":[{"components":[{"internalType":"uint32","name":"originDomain","type":"uint32"},{"internalType":"uint32","name":"destinationDomain","type":"uint32"},{"internalType":"uint32","name":"canonicalDomain","type":"uint32"},{"internalType":"address","name":"to","type":"address"},{"internalType":"address","name":"delegate","type":"address"},{"internalType":"bool","name":"receiveLocal","type":"bool"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"slippage","type":"uint256"},{"internalType":"address","name":"originSender","type":"address"},{"internalType":"uint256","name":"bridgedAmt","type":"uint256"},{"internalType":"uint256","name":"normalizedIn","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes32","name":"canonicalId","type":"bytes32"}],"internalType":"struct TransferInfo","name":"params","type":"tuple"},{"internalType":"address[]","name":"routers","type":"address[]"},{"internalType":"bytes[]","name":"routerSignatures","type":"bytes[]"},{"internalType":"address","name":"sequencer","type":"address"},{"internalType":"bytes","name":"sequencerSignature","type":"bytes"}],"indexed":false,"internalType":"struct ExecuteArgs","name":"args","type":"tuple"},{"indexed":false,"internalType":"address","name":"local","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"address","name":"caller","type":"address"}],"name":"Executed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"transferId","type":"bytes32"},{"indexed":false,"internalType":"bool","name":"success","type":"bool"},{"indexed":false,"internalType":"bytes","name":"returnData","type":"bytes"}],"name":"ExternalCalldataExecuted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"transferId","type":"bytes32"}],"name":"ForceReceiveLocal","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint32","name":"domain","type":"uint32"},{"indexed":false,"internalType":"address","name":"remote","type":"address"},{"indexed":false,"internalType":"address","name":"caller","type":"address"}],"name":"RemoteAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sequencer","type":"address"},{"indexed":false,"internalType":"address","name":"caller","type":"address"}],"name":"SequencerAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sequencer","type":"address"},{"indexed":false,"internalType":"address","name":"caller","type":"address"}],"name":"SequencerRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"transferId","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"slippage","type":"uint256"}],"name":"SlippageUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"transferId","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"increase","type":"uint256"},{"indexed":false,"internalType":"address","name":"asset","type":"address"},{"indexed":false,"internalType":"address","name":"caller","type":"address"}],"name":"TransferRelayerFeesIncreased","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"updated","type":"address"},{"indexed":false,"internalType":"address","name":"caller","type":"address"}],"name":"XAppConnectionManagerSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"transferId","type":"bytes32"},{"indexed":true,"internalType":"uint256","name":"nonce","type":"uint256"},{"indexed":true,"internalType":"bytes32","name":"messageHash","type":"bytes32"},{"components":[{"internalType":"uint32","name":"originDomain","type":"uint32"},{"internalType":"uint32","name":"destinationDomain","type":"uint32"},{"internalType":"uint32","name":"canonicalDomain","type":"uint32"},{"internalType":"address","name":"to","type":"address"},{"internalType":"address","name":"delegate","type":"address"},{"internalType":"bool","name":"receiveLocal","type":"bool"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"slippage","type":"uint256"},{"internalType":"address","name":"originSender","type":"address"},{"internalType":"uint256","name":"bridgedAmt","type":"uint256"},{"internalType":"uint256","name":"normalizedIn","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes32","name":"canonicalId","type":"bytes32"}],"indexed":false,"internalType":"struct TransferInfo","name":"params","type":"tuple"},{"indexed":false,"internalType":"address","name":"asset","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"address","name":"local","type":"address"},{"indexed":false,"internalType":"bytes","name":"messageBody","type":"bytes"}],"name":"XCalled","type":"event"},{"inputs":[{"internalType":"address","name":"_sequencer","type":"address"}],"name":"addSequencer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_sequencer","type":"address"}],"name":"approvedSequencers","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_transferId","type":"bytes32"}],"name":"bumpTransfer","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_transferId","type":"bytes32"},{"internalType":"address","name":"_relayerFeeAsset","type":"address"},{"internalType":"uint256","name":"_relayerFee","type":"uint256"}],"name":"bumpTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"domain","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32","name":"_domain","type":"uint32"},{"internalType":"bytes32","name":"_router","type":"bytes32"}],"name":"enrollRemoteRouter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"uint32","name":"originDomain","type":"uint32"},{"internalType":"uint32","name":"destinationDomain","type":"uint32"},{"internalType":"uint32","name":"canonicalDomain","type":"uint32"},{"internalType":"address","name":"to","type":"address"},{"internalType":"address","name":"delegate","type":"address"},{"internalType":"bool","name":"receiveLocal","type":"bool"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"slippage","type":"uint256"},{"internalType":"address","name":"originSender","type":"address"},{"internalType":"uint256","name":"bridgedAmt","type":"uint256"},{"internalType":"uint256","name":"normalizedIn","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes32","name":"canonicalId","type":"bytes32"}],"internalType":"struct TransferInfo","name":"params","type":"tuple"},{"internalType":"address[]","name":"routers","type":"address[]"},{"internalType":"bytes[]","name":"routerSignatures","type":"bytes[]"},{"internalType":"address","name":"sequencer","type":"address"},{"internalType":"bytes","name":"sequencerSignature","type":"bytes"}],"internalType":"struct ExecuteArgs","name":"_args","type":"tuple"}],"name":"execute","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint32","name":"originDomain","type":"uint32"},{"internalType":"uint32","name":"destinationDomain","type":"uint32"},{"internalType":"uint32","name":"canonicalDomain","type":"uint32"},{"internalType":"address","name":"to","type":"address"},{"internalType":"address","name":"delegate","type":"address"},{"internalType":"bool","name":"receiveLocal","type":"bool"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"slippage","type":"uint256"},{"internalType":"address","name":"originSender","type":"address"},{"internalType":"uint256","name":"bridgedAmt","type":"uint256"},{"internalType":"uint256","name":"normalizedIn","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes32","name":"canonicalId","type":"bytes32"}],"internalType":"struct TransferInfo","name":"_params","type":"tuple"}],"name":"forceReceiveLocal","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint32","name":"originDomain","type":"uint32"},{"internalType":"uint32","name":"destinationDomain","type":"uint32"},{"internalType":"uint32","name":"canonicalDomain","type":"uint32"},{"internalType":"address","name":"to","type":"address"},{"internalType":"address","name":"delegate","type":"address"},{"internalType":"bool","name":"receiveLocal","type":"bool"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"slippage","type":"uint256"},{"internalType":"address","name":"originSender","type":"address"},{"internalType":"uint256","name":"bridgedAmt","type":"uint256"},{"internalType":"uint256","name":"normalizedIn","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes32","name":"canonicalId","type":"bytes32"}],"internalType":"struct TransferInfo","name":"_params","type":"tuple"},{"internalType":"uint256","name":"_slippage","type":"uint256"}],"name":"forceUpdateSlippage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"nonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32","name":"_domain","type":"uint32"}],"name":"remote","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_sequencer","type":"address"}],"name":"removeSequencer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_transferId","type":"bytes32"}],"name":"routedTransfers","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_xAppConnectionManager","type":"address"}],"name":"setXAppConnectionManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_transferId","type":"bytes32"}],"name":"transferStatus","outputs":[{"internalType":"enum DestinationTransferStatus","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"xAppConnectionManager","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32","name":"_destination","type":"uint32"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"address","name":"_asset","type":"address"},{"internalType":"address","name":"_delegate","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_slippage","type":"uint256"},{"internalType":"bytes","name":"_callData","type":"bytes"}],"name":"xcall","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint32","name":"_destination","type":"uint32"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"address","name":"_asset","type":"address"},{"internalType":"address","name":"_delegate","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_slippage","type":"uint256"},{"internalType":"bytes","name":"_callData","type":"bytes"},{"internalType":"uint256","name":"_relayerFee","type":"uint256"}],"name":"xcall","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"_destination","type":"uint32"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"address","name":"_asset","type":"address"},{"internalType":"address","name":"_delegate","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_slippage","type":"uint256"},{"internalType":"bytes","name":"_callData","type":"bytes"},{"internalType":"uint256","name":"_relayerFee","type":"uint256"}],"name":"xcallIntoLocal","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"_destination","type":"uint32"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"address","name":"_asset","type":"address"},{"internalType":"address","name":"_delegate","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_slippage","type":"uint256"},{"internalType":"bytes","name":"_callData","type":"bytes"}],"name":"xcallIntoLocal","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"payable","type":"function"}]
Contract Creation Code
608060405234801561001057600080fd5b50615188806100206000396000f3fe60806040526004361061011f5760003560e01c80636989ca7c116100a0578063affed0e011610064578063affed0e01461033e578063b49c53a714610353578063bfd7903014610373578063c2fb26a6146103b0578063cb8058ba146103d557600080fd5b80636989ca7c146102b85780638a336231146102d85780638aac16ba146102f857806391f5de791461030b57806393f18ac51461031e57600080fd5b806341bdc8b5116100e757806341bdc8b51461020a578063541267111461022a57806359efa1621461024a57806363e3e7d21461026a578063674dc9331461029857600080fd5b8063121cca3114610124578063159e041f146101615780631a8bc0e1146101aa5780632424401f146101d75780633339df96146101ec575b600080fd5b34801561013057600080fd5b5061014461013f3660046141b4565b6103f5565b6040516001600160a01b0390911681526020015b60405180910390f35b34801561016d57600080fd5b5061019a61017c3660046141f1565b6001600160a01b03166000908152601f602052604090205460ff1690565b6040519015158152602001610158565b3480156101b657600080fd5b506101ca6101c536600461420e565b610412565b6040516101589190614227565b6101ea6101e536600461420e565b61047e565b005b3480156101f857600080fd5b506020546001600160a01b0316610144565b34801561021657600080fd5b506101ea6102253660046141f1565b610507565b34801561023657600080fd5b506101ea61024536600461428d565b610664565b34801561025657600080fd5b506101ea6102653660046142d1565b610766565b34801561027657600080fd5b5061028a610285366004614309565b6107fb565b604051908152602001610158565b3480156102a457600080fd5b5061028a6102b3366004614384565b6109ba565b3480156102c457600080fd5b506101ea6102d33660046141f1565b610ae2565b3480156102e457600080fd5b506101ea6102f33660046141f1565b610bda565b61028a61030636600461442d565b610cf6565b61028a61031936600461442d565b610e1b565b34801561032a57600080fd5b5061028a610339366004614384565b610f2d565b34801561034a57600080fd5b5060035461028a565b34801561035f57600080fd5b506101ea61036e3660046144cd565b611041565b34801561037f57600080fd5b506103a361038e36600461420e565b60009081526008602052604090205460ff1690565b604051610158919061452d565b3480156103bc57600080fd5b5060045460405163ffffffff9091168152602001610158565b3480156103e157600080fd5b506101ea6103f0366004614540565b61115f565b63ffffffff81166000908152600f60205260408120545b92915050565b60008181526009602090815260409182902080548351818402810184019094528084526060939283018282801561047257602002820191906000526020600020905b81546001600160a01b03168152600190910190602001808311610454575b50505050509050919050565b601654600119016104a257604051637ce54e2d60e11b815260040160405180910390fd5b6002601655601a54600160a01b900460ff16156104d257604051633ee5b89360e01b815260040160405180910390fd5b346000036104f3576040516348e7dc3f60e01b815260040160405180910390fd5b6104ff8160003461122c565b506001601655565b336105106112d2565b6001600160a01b03161415801561054b575060033360009081526014602052604090205460ff166003811115610548576105486144f9565b14155b1561056957604051637b32c26b60e01b815260040160405180910390fd5b600480546040805163234d8e3d60e21b81529051849363ffffffff909316926001600160a01b03851692638d3638f492818301926020928290030181865afa1580156105b9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105dd9190614574565b63ffffffff161461060057604051621ff66160e61b815260040160405180910390fd5b604080516001600160a01b03841681523360208201527fd6e53d12bb441b2201be4949c7f431b383623888df2abfeef43aaaf272802d50910160405180910390a1602080546001600160a01b0319166001600160a01b039290921691909117905550565b813361067660a08301608084016141f1565b6001600160a01b03161461069d5760405163e3613aff60e01b815260040160405180910390fd5b6127108211156106c057604051633345cd4360e11b815260040160405180910390fd5b60045463ffffffff166106d960408501602086016141b4565b63ffffffff16146106fd57604051632a8e462760e01b815260040160405180910390fd5b600061071061070b85614696565b611300565b6000818152600d6020526040908190208590555190915081907fb243c3cea6cd1bbfd64d5d0765f13734ca7b87fdf14e017391fe12a8891434ca906107589086815260200190565b60405180910390a250505050565b6016546001190161078a57604051637ce54e2d60e11b815260040160405180910390fd5b6002601655601a54600160a01b900460ff16156107ba57604051633ee5b89360e01b815260040160405180910390fd5b806000036107db576040516348e7dc3f60e01b815260040160405180910390fd5b6107e482611330565b50506107f183838361122c565b5050600160165550565b6016546000906001190161082257604051637ce54e2d60e11b815260040160405180910390fd5b6002601655601a54600160a01b900460ff161561085257604051633ee5b89360e01b815260040160405180910390fd5b60008061085e846113a6565b909250905060006001826003811115610879576108796144f9565b14610885576002610888565b60035b60008481526008602052604090208054919250829160ff191660018360038111156108b5576108b56144f9565b021790555060008080610910866108f46108cf8b8061478b565b61018001356108de8c8061478b565b6108ef9060608101906040016141b4565b611767565b6003876003811115610908576109086144f9565b14158b6117a9565b91945092509050600061093a8985858a60038a6003811115610934576109346144f9565b14611d36565b90506001600160a01b0383166109508a8061478b565b6109619060808101906060016141f1565b6001600160a01b0316887f0b07a8b0b083f8976b3c832b720632f49cb8ba1e7a99e1b145f51a47d3391cb78c8686336040516109a09493929190614908565b60405180910390a450506001601655509295945050505050565b601754600090600119016109e1576040516363b468cb60e11b815260040160405180910390fd5b6002601755604080516101a08101825260045463ffffffff90811682528c1660208083019190915260008284018190526001600160a01b03808e1660608501528b166080840152600160a08401528351601f88018390048302810183019094528684529260c08301918890889081908401838280828437600092018290525093855250505060208083018a905233604080850191909152606084018390526080840183905260a0840183905260c090930191909152815180830183526001600160a01b038d168082528183018c905283518085019094528352908201869052919250610ace918391611d7f565b60016017559b9a5050505050505050505050565b33610aeb6112d2565b6001600160a01b031614158015610b26575060033360009081526014602052604090205460ff166003811115610b2357610b236144f9565b14155b15610b4457604051637b32c26b60e01b815260040160405180910390fd5b6001600160a01b0381166000908152601f602052604090205460ff16610b7d57604051637840a40d60e01b815260040160405180910390fd5b6001600160a01b0381166000818152601f6020908152604091829020805460ff19169055815192835233908301527f4860b0a180d4b5969c2757493a999f05d0b22318320f154a02170aa239e24b1391015b60405180910390a150565b33610be36112d2565b6001600160a01b031614158015610c1e575060033360009081526014602052604090205460ff166003811115610c1b57610c1b6144f9565b14155b15610c3c57604051637b32c26b60e01b815260040160405180910390fd5b6001600160a01b038116610c63576040516332f9c08d60e11b815260040160405180910390fd5b6001600160a01b0381166000908152601f602052604090205460ff1615610c9d5760405163e2a4506360e01b815260040160405180910390fd5b6001600160a01b0381166000818152601f6020908152604091829020805460ff19166001179055815192835233908301527f3860a100215fe93b6b95ed1ae0870e538f85a73b30d073f63fefc60e08b0c1249101610bcf565b60175460009060011901610d1d576040516363b468cb60e11b815260040160405180910390fd5b6002601755604080516101a08101825260045463ffffffff90811682528b1660208083019190915260008284018190526001600160a01b03808d1660608501528a16608084015260a083018190528351601f87018390048302810183019094528584529260c083019187908790819084018382808284376000920182905250938552505050602080830189905233604080850191909152606084018390526080840183905260a0840183905260c0909301829052825180840184526001600160a01b038d1681528082018b905283518085019094529183523490830152919250610e08918391611d7f565b60016017559a9950505050505050505050565b60175460009060011901610e42576040516363b468cb60e11b815260040160405180910390fd5b6002601755604080516101a08101825260045463ffffffff90811682528b1660208083019190915260008284018190526001600160a01b03808d1660608501528a166080840152600160a08401528351601f87018390048302810183019094528584529260c083019187908790819084018382808284376000920182905250938552505050602080830189905233604080850191909152606084018390526080840183905260a0840183905260c0909301829052825180840184526001600160a01b038d1681528082018b905283518085019094529183523490830152919250610e08918391611d7f565b60175460009060011901610f54576040516363b468cb60e11b815260040160405180910390fd5b6002601755604080516101a08101825260045463ffffffff90811682528c1660208083019190915260008284018190526001600160a01b03808e1660608501528b16608084015260a083018190528351601f88018390048302810183019094528684529260c08301918890889081908401838280828437600092018290525093855250505060208083018a905233604080850191909152606084018390526080840183905260a0840183905260c090930191909152815180830183526001600160a01b038d168082528183018c905283518085019094528352908201869052919250610ace918391611d7f565b3361104a6112d2565b6001600160a01b031614158015611085575060033360009081526014602052604090205460ff166003811115611082576110826144f9565b14155b156110a357604051637b32c26b60e01b815260040160405180910390fd5b806110c157604051633bca644d60e11b815260040160405180910390fd5b63ffffffff821615806110de575060045463ffffffff8381169116145b156110fc57604051632892757b60e21b815260040160405180910390fd5b63ffffffff82166000818152600f602090815260409182902084905581519283526001600160a01b038416908301523382820152517fb07f562723347d6ea7f9f37b3b31f96b65104c3339d1c89e1b6fa88e2410b85c9181900360600190a15050565b803361117160a08301608084016141f1565b6001600160a01b0316146111985760405163e3613aff60e01b815260040160405180910390fd5b60045463ffffffff166111b160408401602085016141b4565b63ffffffff16146111d557604051630ada556f60e31b815260040160405180910390fd5b60006111e361070b84614696565b6000818152600e6020526040808220805460ff191660011790555191925082917f2510041334ede909998b9aefcca4300fc36c670dd00e1f7f0afffaca56adcb399190a2505050565b6002546001600160a01b03168061125657604051630bd7619560e41b815260040160405180910390fd5b6001600160a01b0383166112735761126e818361205b565b611288565b61127d838361217e565b6112888382846122cf565b604080518381526001600160a01b0385166020820152339181019190915284907ff90d3aafcedf55a0da208dd26d915e0ce1870ee9221586012487a0b366106f6590606001610758565b7fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320546001600160a01b031690565b6000816040516020016113139190614c82565b604051602081830303815290604052805190602001209050919050565b60408051808201909152600080825260208201526000806113508461230e565b9050600061136682602001518360000151611767565b90506113718161232d565b60020154600160a01b900460ff1661139c5760405163a13f958f60e01b815260040160405180910390fd5b9094909350915050565b336000908152600b6020526040812054819060ff161580156113f457506113cd838061478b565b6113de9060a08101906080016141f1565b6001600160a01b0316336001600160a01b031614155b1561141257604051637c32a2b360e01b815260040160405180910390fd5b60045463ffffffff16611425848061478b565b6114369060408101906020016141b4565b63ffffffff161461145a5760405163b6bb322560e01b815260040160405180910390fd5b60006114696020850185614c95565b91506000905061148561147c868061478b565b61070b90614696565b60008181526008602052604090205490915060ff16821561172a57600c548311156114c3576040516313c06ef360e01b815260040160405180910390fd5b60008160038111156114d7576114d76144f9565b146114f557604051630caaeb0b60e11b815260040160405180910390fd5b601f60006115096080890160608a016141f1565b6001600160a01b0316815260208101919091526040016000205460ff1661154357604051631fa09b5360e31b815260040160405180910390fd5b611590826115546020890189614c95565b60405160200161156693929190614cde565b60408051601f19818403018152919052805160209091012061158b6080890189614cf8565b61236e565b6001600160a01b03166115a960808801606089016141f1565b6001600160a01b0316146115d057604051638579eca560e01b815260040160405180910390fd5b6040805160208082018590528183018690528251808303840181526060909201909252805191012060005b848110156117235761160b6123c0565b15801561166857506015600061162460208b018b614c95565b8481811061163457611634614d3e565b905060200201602081019061164991906141f1565b6001600160a01b0316815260208101919091526040016000205460ff16155b1561168657604051630e1eb7f760e31b815260040160405180910390fd5b6116b98261169760408b018b614c95565b848181106116a7576116a7614d3e565b905060200281019061158b9190614cf8565b6001600160a01b03166116cf60208a018a614c95565b838181106116df576116df614d3e565b90506020020160208101906116f491906141f1565b6001600160a01b03161461171b57604051633a1dd23360e21b815260040160405180910390fd5b6001016115fb565b505061175c565b600181600381111561173e5761173e6144f9565b1461175c57604051636320d2cf60e11b815260040160405180910390fd5b909590945092505050565b6000828260405160200161178b92919091825263ffffffff16602082015260400190565b60405160208183030381529060405280519060200120905092915050565b600080806117ba6020850185614c95565b60008981526009602052604090206117d392909161411f565b5060006117e0858061478b565b6117f19060608101906040016141b4565b63ffffffff16156118325761182f8761180a878061478b565b6101800135611819888061478b565b61182a9060608101906040016141b4565b6123e7565b90505b61183c858061478b565b610120013560000361185657600093509150819050611d2c565b6000611862868061478b565b6118739060c081019060a001614d54565b8061188c57506000898152600e602052604090205460ff165b9050600061189a878061478b565b610120013590508715611c3a5760006118b66020890189614c95565b91506118da90506118c7898061478b565b61012001356000600101546127106123f6565b915080600103611acb5782158015611951575081600a60006118ff60208c018c614c95565b600081811061191057611910614d3e565b905060200201602081019061192591906141f1565b6001600160a01b0390811682526020808301939093526040918201600090812091891681529252902054105b80156119675750601b546001600160a01b031615155b15611a36576015600061197d60208b018b614c95565b600081811061198e5761198e614d3e565b90506020020160208101906119a391906141f1565b6001600160a01b03168152602081019190915260400160002054610100900460ff166119e2576040516310c4e50960e01b815260040160405180910390fd5b600080611a238d8d866119f860208f018f614c95565b6000818110611a0957611a09614d3e565b9050602002016020810190611a1e91906141f1565b61240d565b9099509750949550611d2c945050505050565b81600a6000611a4860208c018c614c95565b6000818110611a5957611a59614d3e565b9050602002016020810190611a6e91906141f1565b6001600160a01b03166001600160a01b031681526020019081526020016000206000866001600160a01b03166001600160a01b031681526020019081526020016000206000828254611ac09190614d87565b90915550611c389050565b6000611ad78284614db0565b905060005b611ae7600184614d87565b811015611b845781600a6000611b0060208e018e614c95565b85818110611b1057611b10614d3e565b9050602002016020810190611b2591906141f1565b6001600160a01b03166001600160a01b031681526020019081526020016000206000886001600160a01b03166001600160a01b031681526020019081526020016000206000828254611b779190614d87565b9091555050600101611adc565b506000611b918385614dc4565b611b9b9083614dd8565b905080600a6000611baf60208e018e614c95565b611bba600189614d87565b818110611bc957611bc9614d3e565b9050602002016020810190611bde91906141f1565b6001600160a01b03166001600160a01b031681526020019081526020016000206000886001600160a01b03166001600160a01b031681526020019081526020016000206000828254611c309190614d87565b909155505050505b505b611c44878061478b565b611c559060608101906040016141b4565b60045463ffffffff9081169116148015611c7b57506000611c758a61232d565b60030154115b15611ca75760008981526007602052604081206004018054839290611ca1908490614d87565b90915550505b8115611cd25760008a8152600e60205260409020805460ff191690559450909250829150611d2c9050565b60008a8152600d602052604081208054908290559080611d1e8c8786868503611d0857611cff8e8061478b565b60e00135611d0a565b865b611d148f8061478b565b61014001356125cc565b909950975094955050505050505b9450945094915050565b6000611d5d84611d46888061478b565b611d579060808101906060016141f1565b876122cf565b611d7383868685611d6e8b8061478b565b612651565b50835b95945050505050565b601a54600090600160a01b900460ff1615611dad57604051633ee5b89360e01b815260040160405180910390fd5b82516000906001600160a01b0316158015611dcb5750602084015115155b15611de95760405163ae715ad360e01b815260040160405180910390fd5b611df685602001516127c5565b60608601519091506001600160a01b0316611e235760405162845fdd60e41b815260040160405180910390fd5b6127108560e001511115611e4a5760405163388d723160e11b815260040160405180910390fd5b6040805180820190915260008082526020820181905290819086516000906001600160a01b031615611ff1576000611e858960000151611330565b90935090506000611e958261232d565b84518c5163ffffffff9081169116149350905082611ebd5780546001600160a01b0316611ec3565b60208401515b95506001600160a01b038616611eec5760405163965a46c160e01b815260040160405180910390fd5b6003810154838015611efe5750600081115b15611f4f5760008b602001518360040154611f199190614dd8565b905081811115611f3c576040516348ba8bf160e01b815260040160405180910390fd5b6000848152600760205260409020600401555b50835163ffffffff1660408c01526020808501516101808d01528a015115611fee57611f838a600001518b6020015161217e565b611f9c828b60000151888d602001518f60e001516127fe565b6101208c01528951611fe7906001600160a01b03888116911614611fce576001820154600160a01b900460ff16611fdb565b8154600160a01b900460ff165b60128c60200151612881565b6101408c01525b50505b6003805490600061200183614deb565b909155506101608a015261201489611300565b60208801519093501561203457612034838860000151896020015161122c565b61204c838a8a600001518b6020015189878a886128ec565b509093505050505b9392505050565b804710156120b05760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a20696e73756666696369656e742062616c616e636500000060448201526064015b60405180910390fd5b6000826001600160a01b03168260405160006040518083038185875af1925050503d80600081146120fd576040519150601f19603f3d011682016040523d82523d6000602084013e612102565b606091505b50509050806121795760405162461bcd60e51b815260206004820152603a60248201527f416464726573733a20756e61626c6520746f2073656e642076616c75652c207260448201527f6563697069656e74206d6179206861766520726576657274656400000000000060648201526084016120a7565b505050565b8060000361218a575050565b6001600160a01b0382166121b157604051632a38b13360e01b815260040160405180910390fd5b6040516370a0823160e01b815230600482015282906000906001600160a01b038316906370a0823190602401602060405180830381865afa1580156121fa573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061221e9190614e04565b90506122356001600160a01b038316333086612ad3565b6040516370a0823160e01b8152306004820152839082906001600160a01b038516906370a0823190602401602060405180830381865afa15801561227d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906122a19190614e04565b6122ab9190614d87565b146122c957604051630e40773560e21b815260040160405180910390fd5b50505050565b806000036122dc57505050565b6001600160a01b03831661230357604051633a48ca7b60e11b815260040160405180910390fd5b612179838383612b3e565b604080518082019091526000808252602082015261040c826000612b6e565b6000818152600760205260408120600180820154839291600160a01b90910460ff1610156120545760405163618cca3f60e11b815260040160405180910390fd5b60006123b861237c85612c66565b84848080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250612ca192505050565b949350505050565b6000806123cb6112d2565b6001600160a01b031614806123e2575060125460ff165b905090565b60006123b88484846000612cc5565b6000816124038486614e1d565b6123b89190614db0565b600080600061241b86612d00565b601b546040516369a933a560e01b81526001600160a01b03808416600483015260248201899052306044830152600060648301529293509116906369a933a590608401600060405180830381600087803b15801561247857600080fd5b505af115801561248c573d6000803e3d6000fd5b5050601b54604051631a4ca37b60e21b81526001600160a01b038581166004830152602482018a90523060448301526000945090911691506369328dec906064016020604051808303816000875af11580156124ec573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906125109190614e04565b9050858110156125335760405163407559a360e11b815260040160405180910390fd5b6000888152601d60205260409020869055601c5461271090612556908890614e1d565b6125609190614db0565b6000898152601e60209081526040918290209290925580516001600160a01b038581168252928101899052918716918a917f2d3ba0fa5be2ef8cb1ec8920a07a6cbccc2397b18ca3e70f48ea695500b8f218910160405180910390a35084925090505b94509492505050565b60008060006125da8861232d565b60018101549091506001600160a01b0390811690881681036126025786935091506126479050565b866000036126165786935091506126479050565b6126408989838a61263b60128860010160149054906101000a900460ff168c8e612d39565b612d85565b9350935050505b9550959350505050565b7fc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a47061267f60c0830183614cf8565b60405161268d929190614e34565b604051809103902003156127be576000806127546126b160808501606086016141f1565b6127105a6126bf9190614d87565b600061010063fd614f4160e01b8c8c8c8c6126db5760006126ed565b6126ed6101208d016101008e016141f1565b6126fa60208e018e6141b4565b61270760c08f018f614cf8565b60405160240161271d9796959493929190614e44565b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b031990931692909217909152612ec4565b9150915083158015612764575081155b15612781576040516264cdd360e41b815260040160405180910390fd5b867fb1a4ab59facaedd6d3a71da3902e0a1fa5b99750c0e20cd878334378a41cb33583836040516127b3929190614e97565b60405180910390a250505b5050505050565b63ffffffff81166000908152600f6020526040902054806127f957604051630c3bcd4960e41b815260040160405180910390fd5b919050565b60008260000361281057506000611d76565b846001600160a01b0316846001600160a01b031603612830575081611d76565b600061283b8761232d565b905060006128748888888861263b8760010160149054906101000a900460ff168860000160149054906101000a900460ff168c8c612d39565b5098975050505050505050565b60008260ff168460ff1603612897575080612054565b60008360ff168560ff1610156128cd576128b18585614eb2565b6128bc90600a614faf565b6128c69084614e1d565b90506123b8565b6128d78486614eb2565b6128e290600a614faf565b611d769084614db0565b610120870151801561295e578161295e57604051632770a7eb60e21b8152306004820152602481018290526001600160a01b03841690639dc29fac90604401600060405180830381600087803b15801561294557600080fd5b505af1158015612959573d6000803e3d6000fd5b505050505b6000846000015185602001516003848d604051602001612982959493929190614fbe565b60408051601f1981840301815282825260208054639fa92f9d60e01b8552925191945060009384936001600160a01b031692639fa92f9d926004808401939192918290030181865afa1580156129dc573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612a009190614ffd565b6001600160a01b031663fa31de018c602001518a866040518463ffffffff1660e01b8152600401612a339392919061501a565b6000604051808303816000875af1158015612a52573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052612a7a919081019061503f565b91509150818b61016001518d7fed8e6ba697dd65259e5ce532ac08ff06d1a3607bcec58f8f0937fe36a5666c548e8e8e8c88604051612abd9594939291906150c1565b60405180910390a4505050505050505050505050565b6040516001600160a01b03808516602483015283166044820152606481018290526122c99085906323b872dd60e01b906084015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b031990931692909217909152612f4e565b6040516001600160a01b03831660248201526044810182905261217990849063a9059cbb60e01b90606401612b07565b604080518082019091526000808252602082015260408051808201909152600080825260208201526001600160a01b038416612bab57905061040c565b506001600160a01b03831660009081526005830160209081526040918290208251808401909352805463ffffffff168084526001909101549183019190915215612bf657905061040c565b612c008484613020565b15612c2657600483015463ffffffff1681526001600160a01b0384166020820152612054565b506001600160a01b03831660009081526006830160209081526040918290208251808401909352805463ffffffff16835260010154908201529392505050565b6040517f19457468657265756d205369676e6564204d6573736167653a0a3332000000006020820152603c8101829052600090605c01611313565b6000806000612cb0858561305f565b91509150612cbd816130a4565b509392505050565b600481015460009063ffffffff90811690841603612ce45750826123b8565b612ced8561232d565b546001600160a01b031695945050505050565b600080612d0c8361232d565b600101546001600160a01b031690508061040c57604051630558a50760e31b815260040160405180910390fd5b600082600003612d4b575060006123b8565b6000612710612d5a8482614d87565b612d649086614e1d565b612d6e9190614db0565b9050612d7b868683612881565b9695505050505050565b600085815260186020526040812081908190612da0816131f1565b15612dd257612dc6612db28a8a61320e565b612dbc8b8a61320e565b839190898961328e565b87935093505050612647565b6000612ddd8a61232d565b600201546001600160a01b0390811691508990612dfe908216836000613597565b612e126001600160a01b038216838a6136ac565b6001600160a01b03821663d460f0a2898c8c8b612e31610e1042614dd8565b6040516001600160e01b031960e088901b16815260048101959095526001600160a01b0393841660248601529290911660448401526064830152608482015260a4016020604051808303816000875af1158015612e92573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612eb69190614e04565b899550955050505050612647565b6000606060008060008661ffff166001600160401b03811115612ee957612ee9614591565b6040519080825280601f01601f191660200182016040528015612f13576020820181803683370190505b5090506000808751602089018b8e8ef191503d925086831115612f34578692505b828152826000602083013e90999098509650505050505050565b6000612fa3826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b031661375e9092919063ffffffff16565b8051909150156121795780806020019051810190612fc19190615110565b6121795760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b60648201526084016120a7565b6001600160a01b038216600090815260068201602052604081205463ffffffff161561304e5750600061040c565b50506001600160a01b03163b151590565b60008082516041036130955760208301516040840151606085015160001a6130898782858561376d565b9450945050505061309d565b506000905060025b9250929050565b60008160048111156130b8576130b86144f9565b036130c05750565b60018160048111156130d4576130d46144f9565b036131215760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e6174757265000000000000000060448201526064016120a7565b6002816004811115613135576131356144f9565b036131825760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e6774680060448201526064016120a7565b6003816004811115613196576131966144f9565b036131ee5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b60648201526084016120a7565b50565b600c81015460009060ff1615801561040c57505060080154151590565b60008281526019602090815260408083206001600160a01b0385168085529083528184205486855260189093529083206008018054849360ff169291908390811061325b5761325b614d3e565b6000918252602090912001546001600160a01b0316146123b85760405163054e442960e41b815260040160405180910390fd5b600c85015460009060ff16156132d65760405162461bcd60e51b815260206004820152600d60248201526c191a5cd8589b1959081c1bdbdb609a1b60448201526064016120a7565b85600a018560ff16815481106132ee576132ee614d3e565b90600052602060002001548311156133415760405162461bcd60e51b81526020600482015260166024820152756d6f7265207468616e20706f6f6c2062616c616e636560501b60448201526064016120a7565b600080600088600a0180548060200260200160405190810160405280929190818152602001828054801561339457602002820191906000526020600020905b815481526020019060010190808311613380575b505050505090506133a8898989898561382e565b9093509150848310156133ea5760405162461bcd60e51b815260206004820152600a6024820152696479203c206d696e447960b01b60448201526064016120a7565b6000896009018860ff168154811061340457613404614d3e565b90600052602060002001546402540be4008b60060154856134259190614e1d565b61342f9190614db0565b6134399190614db0565b905086828a60ff168151811061345157613451614d3e565b60200260200101516134639190614dd8565b8a600a018a60ff168154811061347b5761347b614d3e565b90600052602060002001819055508084838a60ff16815181106134a0576134a0614d3e565b60200260200101516134b29190614d87565b6134bc9190614d87565b8a600a018960ff16815481106134d4576134d4614d3e565b600091825260209091200155801561353957808a600b018960ff16815481106134ff576134ff614d3e565b90600052602060002001546135149190614dd8565b8a600b018960ff168154811061352c5761352c614d3e565b6000918252602090912001555b8954604080518981526020810187905260ff8c8116828401528b16606082015290513392917f28d4cf2d5709da3b474b5f05cfd7083faffd601f9500d1f8439b8a13ec7df320919081900360800190a3509198975050505050505050565b8015806136115750604051636eb1769f60e11b81523060048201526001600160a01b03838116602483015284169063dd62ed3e90604401602060405180830381865afa1580156135eb573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061360f9190614e04565b155b61367c5760405162461bcd60e51b815260206004820152603660248201527f5361666545524332303a20617070726f76652066726f6d206e6f6e2d7a65726f60448201527520746f206e6f6e2d7a65726f20616c6c6f77616e636560501b60648201526084016120a7565b6040516001600160a01b03831660248201526044810182905261217990849063095ea7b360e01b90606401612b07565b604051636eb1769f60e11b81523060048201526001600160a01b038381166024830152600091839186169063dd62ed3e90604401602060405180830381865afa1580156136fd573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906137219190614e04565b61372b9190614dd8565b6040516001600160a01b0385166024820152604481018290529091506122c990859063095ea7b360e01b90606401612b07565b60606123b884846000856139f4565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156137a457506000905060036125c3565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa1580156137f8573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b038116613821576000600192509250506125c3565b9660009650945050505050565b60008060008760090180548060200260200160405190810160405280929190818152602001828054801561388157602002820191906000526020600020905b81548152602001906001019080831161386d575b5050505050905060006138948583613acf565b905080518860ff161080156138ac575080518760ff16105b6138ed5760405162461bcd60e51b8152602060048201526012602482015271696e646578206f7574206f662072616e676560701b60448201526064016120a7565b6000818960ff168151811061390457613904614d3e565b6020026020010151838a60ff168151811061392157613921614d3e565b6020026020010151886139349190614e1d565b61393e9190614dd8565b9050600061395761394e8c613bd9565b8b8b8587613be4565b9050600181848b60ff168151811061397157613971614d3e565b60200260200101516139839190614d87565b61398d9190614d87565b95506402540be4008b60050154876139a59190614e1d565b6139af9190614db0565b9450838960ff16815181106139c6576139c6614d3e565b602002602001015185876139da9190614d87565b6139e49190614db0565b9550505050509550959350505050565b606082471015613a555760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b60648201526084016120a7565b600080866001600160a01b03168587604051613a71919061512d565b60006040518083038185875af1925050503d8060008114613aae576040519150601f19603f3d011682016040523d82523d6000602084013e613ab3565b606091505b5091509150613ac487838387613e4b565b979650505050505050565b81518151606091908114613b1c5760405162461bcd60e51b81526020600482015260146024820152736d69736d61746368206d756c7469706c6965727360601b60448201526064016120a7565b6000816001600160401b03811115613b3657613b36614591565b604051908082528060200260200182016040528015613b5f578160200160208202803683370190505b50905060005b82811015613bd057848181518110613b7f57613b7f614d3e565b6020026020010151868281518110613b9957613b99614d3e565b6020026020010151613bab9190614e1d565b828281518110613bbd57613bbd614d3e565b6020908102919091010152600101613b65565b50949350505050565b600061040c82613ec4565b805160009060ff80861690871603613c3e5760405162461bcd60e51b815260206004820152601760248201527f636f6d7061726520746f6b656e20746f20697473656c6600000000000000000060448201526064016120a7565b808660ff16108015613c525750808560ff16105b613c905760405162461bcd60e51b815260206004820152600f60248201526e1d1bdad95b881b9bdd08199bdd5b99608a1b60448201526064016120a7565b6000613c9c8489613f0d565b905080600080613cac8b86614e1d565b90506000805b86811015613d33578b60ff168103613ccc57899150613cff565b8a60ff168114613cf757888181518110613ce857613ce8614d3e565b60200260200101519150613cff565b600101613cb2565b613d098285614dd8565b9350613d158783614e1d565b613d1f8787614e1d565b613d299190614db0565b9450600101613cb2565b50613d3e8683614e1d565b6064613d4a8787614e1d565b613d549190614e1d565b613d5e9190614db0565b9350600082613d6e606488614e1d565b613d789190614db0565b613d829085614dd8565b9050600086815b610100811015613e02578192508884836002613da59190614e1d565b613daf9190614dd8565b613db99190614d87565b88613dc48480614e1d565b613dce9190614dd8565b613dd89190614db0565b9150613de482846140ba565b15613dfa57509850611d76975050505050505050565b600101613d89565b5060405162461bcd60e51b815260206004820152601e60248201527f417070726f78696d6174696f6e20646964206e6f7420636f6e7665726765000060448201526064016120a7565b60608315613eba578251600003613eb3576001600160a01b0385163b613eb35760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016120a7565b50816123b8565b6123b883836140d0565b600481015460028201546001830154909190808314801590613ee557508142105b15613f06576000846003015490508083038142038502428503840201049350505b5050919050565b815160009081805b82811015613f4c57858181518110613f2f57613f2f614d3e565b602002602001015182613f429190614dd8565b9150600101613f15565b5080600003613f605760009250505061040c565b60008181613f6e8588614e1d565b905060005b61010081101561407b578260005b87811015613fcc57878b8281518110613f9c57613f9c614d3e565b6020026020010151613fae9190614e1d565b613fb88684614e1d565b613fc29190614db0565b9150600101613f81565b5083945080876001613fde9190614dd8565b613fe89190614e1d565b606485613ff58287614d87565b613fff9190614e1d565b6140099190614db0565b6140139190614dd8565b8461401e8984614e1d565b606461402a8a88614e1d565b6140349190614db0565b61403e9190614dd8565b6140489190614e1d565b6140529190614db0565b935061405e84866140ba565b15614072578397505050505050505061040c565b50600101613f73565b5060405162461bcd60e51b81526020600482015260136024820152724420646f6573206e6f7420636f6e766572676560681b60448201526064016120a7565b600060026140c884846140fa565b109392505050565b8151156140e05781518083602001fd5b8060405162461bcd60e51b81526004016120a7919061513f565b6000818311156141155761410e8284614d87565b905061040c565b6120548383614d87565b828054828255906000526020600020908101928215614172579160200282015b828111156141725781546001600160a01b0319166001600160a01b0384351617825560209092019160019091019061413f565b5061417e929150614182565b5090565b5b8082111561417e5760008155600101614183565b63ffffffff811681146131ee57600080fd5b80356127f981614197565b6000602082840312156141c657600080fd5b813561205481614197565b6001600160a01b03811681146131ee57600080fd5b80356127f9816141d1565b60006020828403121561420357600080fd5b8135612054816141d1565b60006020828403121561422057600080fd5b5035919050565b6020808252825182820181905260009190848201906040850190845b818110156142685783516001600160a01b031683529284019291840191600101614243565b50909695505050505050565b60006101a0828403121561428757600080fd5b50919050565b600080604083850312156142a057600080fd5b82356001600160401b038111156142b657600080fd5b6142c285828601614274565b95602094909401359450505050565b6000806000606084860312156142e657600080fd5b8335925060208401356142f8816141d1565b929592945050506040919091013590565b60006020828403121561431b57600080fd5b81356001600160401b0381111561433157600080fd5b820160a0818503121561205457600080fd5b60008083601f84011261435557600080fd5b5081356001600160401b0381111561436c57600080fd5b60208301915083602082850101111561309d57600080fd5b60008060008060008060008060006101008a8c0312156143a357600080fd5b89356143ae81614197565b985060208a01356143be816141d1565b975060408a01356143ce816141d1565b965060608a01356143de816141d1565b955060808a0135945060a08a0135935060c08a01356001600160401b0381111561440757600080fd5b6144138c828d01614343565b9a9d999c50979a9699959894979660e00135949350505050565b60008060008060008060008060e0898b03121561444957600080fd5b883561445481614197565b97506020890135614464816141d1565b96506040890135614474816141d1565b95506060890135614484816141d1565b94506080890135935060a0890135925060c08901356001600160401b038111156144ad57600080fd5b6144b98b828c01614343565b999c989b5096995094979396929594505050565b600080604083850312156144e057600080fd5b82356144eb81614197565b946020939093013593505050565b634e487b7160e01b600052602160045260246000fd5b600481106131ee57634e487b7160e01b600052602160045260246000fd5b6020810161453a8361450f565b91905290565b60006020828403121561455257600080fd5b81356001600160401b0381111561456857600080fd5b6123b884828501614274565b60006020828403121561458657600080fd5b815161205481614197565b634e487b7160e01b600052604160045260246000fd5b6040516101a081016001600160401b03811182821017156145ca576145ca614591565b60405290565b604051601f8201601f191681016001600160401b03811182821017156145f8576145f8614591565b604052919050565b80151581146131ee57600080fd5b80356127f981614600565b60006001600160401b0382111561463257614632614591565b50601f01601f191660200190565b600082601f83011261465157600080fd5b813561466461465f82614619565b6145d0565b81815284602083860101111561467957600080fd5b816020850160208301376000918101602001919091529392505050565b60006101a082360312156146a957600080fd5b6146b16145a7565b6146ba836141a9565b81526146c8602084016141a9565b60208201526146d9604084016141a9565b60408201526146ea606084016141e6565b60608201526146fb608084016141e6565b608082015261470c60a0840161460e565b60a082015260c08301356001600160401b0381111561472a57600080fd5b61473636828601614640565b60c08301525060e083013560e08201526101006147548185016141e6565b9082015261012083810135908201526101408084013590820152610160808401359082015261018092830135928101929092525090565b6000823561019e198336030181126147a257600080fd5b9190910192915050565b6000808335601e198436030181126147c357600080fd5b83016020810192503590506001600160401b038111156147e257600080fd5b80360382131561309d57600080fd5b81835281816020850137506000828201602090810191909152601f909101601f19169091010190565b6000808335601e1984360301811261483157600080fd5b83016020810192503590506001600160401b0381111561485057600080fd5b8060051b360382131561309d57600080fd5b8183526000602080850194508260005b858110156148a0578135614885816141d1565b6001600160a01b031687529582019590820190600101614872565b509495945050505050565b81835260006020808501808196508560051b810191508460005b878110156148fb5782840389526148dc82886147ac565b6148e78682846147f1565b9a87019a95505050908401906001016148c5565b5091979650505050505050565b608081526000610120863561019e1988360301811261492657600080fd5b60a06080850152870161494882850161493e836141a9565b63ffffffff169052565b614954602082016141a9565b6101406149688187018363ffffffff169052565b614974604084016141a9565b915061016061498a8188018463ffffffff169052565b614996606085016141e6565b92506101806149af818901856001600160a01b03169052565b6149bb608086016141e6565b93506101a06149d4818a01866001600160a01b03169052565b6149e060a0870161460e565b8015156101c08b015294506149f860c08701876147ac565b9550816101e08b0152614a106102c08b0187836147f1565b9550505060e0850135610200890152610100614a2d8187016141e6565b6001600160a01b03166102208a0152858701356102408a0152838601356102608a0152828601356102808a0152818601356102a08a0152614a7160208e018e61481a565b97509550607f199350838986030160a08a0152614a8f858888614862565b9650614a9e60408e018e61481a565b96509450838988030160c08a0152614ab78787876148ab565b9650614ac560608e016141e6565b6001600160a01b03811660e08b01529550614ae360808e018e6147ac565b965094508389880301818a015250505050614aff8383836147f1565b9350505050614b1960208301866001600160a01b03169052565b836040830152611d7660608301846001600160a01b03169052565b60005b83811015614b4f578181015183820152602001614b37565b50506000910152565b60008151808452614b70816020860160208601614b34565b601f01601f19169290920160200192915050565b805163ffffffff16825260006101a06020830151614baa602086018263ffffffff169052565b506040830151614bc2604086018263ffffffff169052565b506060830151614bdd60608601826001600160a01b03169052565b506080830151614bf860808601826001600160a01b03169052565b5060a0830151614c0c60a086018215159052565b5060c08301518160c0860152614c2482860182614b58565b91505060e083015160e085015261010080840151614c4c828701826001600160a01b03169052565b50506101208381015190850152610140808401519085015261016080840151908501526101809283015192909301919091525090565b6020815260006120546020830184614b84565b6000808335601e19843603018112614cac57600080fd5b8301803591506001600160401b03821115614cc657600080fd5b6020019150600581901b360382131561309d57600080fd5b838152604060208201526000611d76604083018486614862565b6000808335601e19843603018112614d0f57600080fd5b8301803591506001600160401b03821115614d2957600080fd5b60200191503681900382131561309d57600080fd5b634e487b7160e01b600052603260045260246000fd5b600060208284031215614d6657600080fd5b813561205481614600565b634e487b7160e01b600052601160045260246000fd5b8181038181111561040c5761040c614d71565b634e487b7160e01b600052601260045260246000fd5b600082614dbf57614dbf614d9a565b500490565b600082614dd357614dd3614d9a565b500690565b8082018082111561040c5761040c614d71565b600060018201614dfd57614dfd614d71565b5060010190565b600060208284031215614e1657600080fd5b5051919050565b808202811582820484141761040c5761040c614d71565b8183823760009101908152919050565b878152602081018790526001600160a01b0386811660408301528516606082015263ffffffff8416608082015260c060a08201819052600090614e8a90830184866147f1565b9998505050505050505050565b82151581526040602082015260006123b86040830184614b58565b60ff828116828216039081111561040c5761040c614d71565b600181815b80851115614f06578160001904821115614eec57614eec614d71565b80851615614ef957918102915b93841c9390800290614ed0565b509250929050565b600082614f1d5750600161040c565b81614f2a5750600061040c565b8160018114614f405760028114614f4a57614f66565b600191505061040c565b60ff841115614f5b57614f5b614d71565b50506001821b61040c565b5060208310610133831016604e8410600b8410161715614f89575081810a61040c565b614f938383614ecb565b8060001904821115614fa757614fa7614d71565b029392505050565b600061205460ff841683614f0e565b63ffffffff60e01b8660e01b168152846004820152614fdc8461450f565b60f89390931b60248401526025830191909152604582015260650192915050565b60006020828403121561500f57600080fd5b8151612054816141d1565b63ffffffff84168152826020820152606060408201526000611d766060830184614b58565b6000806040838503121561505257600080fd5b8251915060208301516001600160401b0381111561506f57600080fd5b8301601f8101851361508057600080fd5b805161508e61465f82614619565b8181528660208385010111156150a357600080fd5b6150b4826020830160208601614b34565b8093505050509250929050565b60a0815260006150d460a0830188614b84565b6001600160a01b038781166020850152604084018790528516606084015282810360808401526151048185614b58565b98975050505050505050565b60006020828403121561512257600080fd5b815161205481614600565b600082516147a2818460208701614b34565b6020815260006120546020830184614b5856fea264697066735822122083a85792fc0e29cd905f805175da0fd17a6a6073b7d3197f199a713d8d3885bf64736f6c63430008110033
Age | Block | Fee Address | BC Fee Address | Voting Power | Jailed | Incoming |
---|